summaryrefslogtreecommitdiff
path: root/drivers/net/iavf/iavf_rxtx_vec_avx2.c
blob: f0c00be56dd1b3872809f9bbeacd8ad8db15fd49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2019 Intel Corporation
 */

#include "base/iavf_prototype.h"
#include "iavf_rxtx_vec_common.h"

#include <x86intrin.h>

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

static inline void
iavf_rxq_rearm(struct iavf_rx_queue *rxq)
{
	int i;
	uint16_t rx_id;
	volatile union iavf_rx_desc *rxdp;
	struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];

	rxdp = rxq->rx_ring + rxq->rxrearm_start;

	/* Pull 'n' more MBUFs into the software ring */
	if (rte_mempool_get_bulk(rxq->mp,
				 (void *)rxp,
				 IAVF_RXQ_REARM_THRESH) < 0) {
		if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
		    rxq->nb_rx_desc) {
			__m128i dma_addr0;

			dma_addr0 = _mm_setzero_si128();
			for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
				rxp[i] = &rxq->fake_mbuf;
				_mm_store_si128((__m128i *)&rxdp[i].read,
						dma_addr0);
			}
		}
		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
			IAVF_RXQ_REARM_THRESH;
		return;
	}

#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
	struct rte_mbuf *mb0, *mb1;
	__m128i dma_addr0, dma_addr1;
	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
			RTE_PKTMBUF_HEADROOM);
	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
	for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
		__m128i vaddr0, vaddr1;

		mb0 = rxp[0];
		mb1 = rxp[1];

		/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
				offsetof(struct rte_mbuf, buf_addr) + 8);
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);

		/* convert pa to dma_addr hdr/data */
		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);

		/* add headroom to pa values */
		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);

		/* flush desc with pa dma_addr */
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
	}
#else
	struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
	__m256i dma_addr0_1, dma_addr2_3;
	__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
	/* Initialize the mbufs in vector, process 4 mbufs in one loop */
	for (i = 0; i < IAVF_RXQ_REARM_THRESH;
			i += 4, rxp += 4, rxdp += 4) {
		__m128i vaddr0, vaddr1, vaddr2, vaddr3;
		__m256i vaddr0_1, vaddr2_3;

		mb0 = rxp[0];
		mb1 = rxp[1];
		mb2 = rxp[2];
		mb3 = rxp[3];

		/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
				offsetof(struct rte_mbuf, buf_addr) + 8);
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
		vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
		vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);

		/**
		 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
		 * into the high lanes. Similarly for 2 & 3
		 */
		vaddr0_1 =
			_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
						vaddr1, 1);
		vaddr2_3 =
			_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
						vaddr3, 1);

		/* convert pa to dma_addr hdr/data */
		dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
		dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);

		/* add headroom to pa values */
		dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
		dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);

		/* flush desc with pa dma_addr */
		_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
		_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
	}

#endif

	rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
		rxq->rxrearm_start = 0;

	rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;

	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));

	/* Update the tail pointer on the NIC */
	IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}

#define PKTLEN_SHIFT     10

static inline uint16_t
_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
			     struct rte_mbuf **rx_pkts,
			     uint16_t nb_pkts, uint8_t *split_packet)
{
#define IAVF_DESCS_PER_LOOP_AVX 8

	/* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
	static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
		/* [0] reserved */
		[1] = RTE_PTYPE_L2_ETHER,
		/* [2] - [21] reserved */
		[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_FRAG,
		[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_NONFRAG,
		[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_UDP,
		/* [25] reserved */
		[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_TCP,
		[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_SCTP,
		[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_ICMP,
		/* All others reserved */
	};
	const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
			0, rxq->mbuf_initializer);
	/* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
	struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
	volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
	const int avx_aligned = ((rxq->rx_tail & 1) == 0);

	rte_prefetch0(rxdp);

	/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);

	/* See if we need to rearm the RX queue - gives the prefetch a bit
	 * of time to act
	 */
	if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
		iavf_rxq_rearm(rxq);

	/* Before we start moving massive data around, check to see if
	 * there is actually a packet available
	 */
	if (!(rxdp->wb.qword1.status_error_len &
			rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
		return 0;

	/* constants used in processing loop */
	const __m256i crc_adjust =
		_mm256_set_epi16
			(/* first descriptor */
			 0, 0, 0,       /* ignore non-length fields */
			 -rxq->crc_len, /* sub crc on data_len */
			 0,             /* ignore high-16bits of pkt_len */
			 -rxq->crc_len, /* sub crc on pkt_len */
			 0, 0,          /* ignore pkt_type field */
			 /* second descriptor */
			 0, 0, 0,       /* ignore non-length fields */
			 -rxq->crc_len, /* sub crc on data_len */
			 0,             /* ignore high-16bits of pkt_len */
			 -rxq->crc_len, /* sub crc on pkt_len */
			 0, 0           /* ignore pkt_type field */
			);

	/* 8 packets DD mask, LSB in each 32-bit value */
	const __m256i dd_check = _mm256_set1_epi32(1);

	/* 8 packets EOP mask, second-LSB in each 32-bit value */
	const __m256i eop_check = _mm256_slli_epi32(dd_check,
			IAVF_RX_DESC_STATUS_EOF_SHIFT);

	/* mask to shuffle from desc. to mbuf (2 descriptors)*/
	const __m256i shuf_msk =
		_mm256_set_epi8
			(/* first descriptor */
			 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
			 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
			 15, 14,      /* octet 15~14, 16 bits data_len */
			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
			 15, 14,      /* octet 15~14, low 16 bits pkt_len */
			 0xFF, 0xFF,  /* pkt_type set as unknown */
			 0xFF, 0xFF,  /*pkt_type set as unknown */
			 /* second descriptor */
			 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
			 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
			 15, 14,      /* octet 15~14, 16 bits data_len */
			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
			 15, 14,      /* octet 15~14, low 16 bits pkt_len */
			 0xFF, 0xFF,  /* pkt_type set as unknown */
			 0xFF, 0xFF   /*pkt_type set as unknown */
			);
	/**
	 * compile-time check the above crc and shuffle layout is correct.
	 * NOTE: the first field (lowest address) is given last in set_epi
	 * calls above.
	 */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);

	/* Status/Error flag masks */
	/**
	 * mask everything except RSS, flow director and VLAN flags
	 * bit2 is for VLAN tag, bit11 for flow director indication
	 * bit13:12 for RSS indication. Bits 3-5 of error
	 * field (bits 22-24) are for IP/L4 checksum errors
	 */
	const __m256i flags_mask =
		 _mm256_set1_epi32((1 << 2) | (1 << 11) |
				   (3 << 12) | (7 << 22));
	/**
	 * data to be shuffled by result of flag mask. If VLAN bit is set,
	 * (bit 2), then position 4 in this array will be used in the
	 * destination
	 */
	const __m256i vlan_flags_shuf =
		_mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
				 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
	/**
	 * data to be shuffled by result of flag mask, shifted down 11.
	 * If RSS/FDIR bits are set, shuffle moves appropriate flags in
	 * place.
	 */
	const __m256i rss_flags_shuf =
		_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
				PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
				0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
				0, 0, 0, 0, 0, 0, 0, 0,
				PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
				0, 0, 0, 0, PKT_RX_FDIR, 0);

	/**
	 * data to be shuffled by the result of the flags mask shifted by 22
	 * bits.  This gives use the l3_l4 flags.
	 */
	const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
			/* shift right 1 bit to make sure it not exceed 255 */
			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
			 PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
			 PKT_RX_L4_CKSUM_BAD) >> 1,
			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
			PKT_RX_IP_CKSUM_BAD >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
			/* second 128-bits */
			0, 0, 0, 0, 0, 0, 0, 0,
			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
			 PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
			 PKT_RX_L4_CKSUM_BAD) >> 1,
			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
			PKT_RX_IP_CKSUM_BAD >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);

	const __m256i cksum_mask =
		 _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
				   PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
				   PKT_RX_EIP_CKSUM_BAD);

	RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */

	uint16_t i, received;

	for (i = 0, received = 0; i < nb_pkts;
	     i += IAVF_DESCS_PER_LOOP_AVX,
	     rxdp += IAVF_DESCS_PER_LOOP_AVX) {
		/* step 1, copy over 8 mbuf pointers to rx_pkts array */
		_mm256_storeu_si256((void *)&rx_pkts[i],
				    _mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
		_mm256_storeu_si256
			((void *)&rx_pkts[i + 4],
			 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif

		__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
		/* for AVX we need alignment otherwise loads are not atomic */
		if (avx_aligned) {
			/* load in descriptors, 2 at a time, in reverse order */
			raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
			rte_compiler_barrier();
			raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
			rte_compiler_barrier();
			raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
			rte_compiler_barrier();
			raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
		} else
#endif
		{
			const __m128i raw_desc7 =
				_mm_load_si128((void *)(rxdp + 7));
			rte_compiler_barrier();
			const __m128i raw_desc6 =
				_mm_load_si128((void *)(rxdp + 6));
			rte_compiler_barrier();
			const __m128i raw_desc5 =
				_mm_load_si128((void *)(rxdp + 5));
			rte_compiler_barrier();
			const __m128i raw_desc4 =
				_mm_load_si128((void *)(rxdp + 4));
			rte_compiler_barrier();
			const __m128i raw_desc3 =
				_mm_load_si128((void *)(rxdp + 3));
			rte_compiler_barrier();
			const __m128i raw_desc2 =
				_mm_load_si128((void *)(rxdp + 2));
			rte_compiler_barrier();
			const __m128i raw_desc1 =
				_mm_load_si128((void *)(rxdp + 1));
			rte_compiler_barrier();
			const __m128i raw_desc0 =
				_mm_load_si128((void *)(rxdp + 0));

			raw_desc6_7 =
				_mm256_inserti128_si256
					(_mm256_castsi128_si256(raw_desc6),
					 raw_desc7, 1);
			raw_desc4_5 =
				_mm256_inserti128_si256
					(_mm256_castsi128_si256(raw_desc4),
					 raw_desc5, 1);
			raw_desc2_3 =
				_mm256_inserti128_si256
					(_mm256_castsi128_si256(raw_desc2),
					 raw_desc3, 1);
			raw_desc0_1 =
				_mm256_inserti128_si256
					(_mm256_castsi128_si256(raw_desc0),
					 raw_desc1, 1);
		}

		if (split_packet) {
			int j;

			for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
				rte_mbuf_prefetch_part2(rx_pkts[i + j]);
		}

		/**
		 * convert descriptors 4-7 into mbufs, adjusting length and
		 * re-arranging fields. Then write into the mbuf
		 */
		const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
							 PKTLEN_SHIFT);
		const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
							 PKTLEN_SHIFT);
		const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
							   len6_7, 0x80);
		const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
							   len4_5, 0x80);
		__m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
		__m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);

		mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
		mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
		/**
		 * to get packet types, shift 64-bit values down 30 bits
		 * and so ptype is in lower 8-bits in each
		 */
		const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
		const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
		const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
		const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
		const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
		const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);

		mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
		mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
		mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
		mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
		/* merge the status bits into one register */
		const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
				desc4_5);

		/**
		 * convert descriptors 0-3 into mbufs, adjusting length and
		 * re-arranging fields. Then write into the mbuf
		 */
		const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
							 PKTLEN_SHIFT);
		const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
							 PKTLEN_SHIFT);
		const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
							   len2_3, 0x80);
		const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
							   len0_1, 0x80);
		__m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
		__m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);

		mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
		mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
		/* get the packet types */
		const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
		const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
		const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
		const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
		const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
		const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);

		mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
		mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
		mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
		mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
		/* merge the status bits into one register */
		const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
								desc0_1);

		/**
		 * take the two sets of status bits and merge to one
		 * After merge, the packets status flags are in the
		 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
		 */
		__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
							  status0_3);

		/* now do flag manipulation */

		/* get only flag/error bits we want */
		const __m256i flag_bits =
			_mm256_and_si256(status0_7, flags_mask);
		/* set vlan and rss flags */
		const __m256i vlan_flags =
			_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
		const __m256i rss_flags =
			_mm256_shuffle_epi8(rss_flags_shuf,
					    _mm256_srli_epi32(flag_bits, 11));
		/**
		 * l3_l4_error flags, shuffle, then shift to correct adjustment
		 * of flags in flags_shuf, and finally mask out extra bits
		 */
		__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
				_mm256_srli_epi32(flag_bits, 22));
		l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
		l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);

		/* merge flags */
		const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
				_mm256_or_si256(rss_flags, vlan_flags));
		/**
		 * At this point, we have the 8 sets of flags in the low 16-bits
		 * of each 32-bit value in vlan0.
		 * We want to extract these, and merge them with the mbuf init
		 * data so we can do a single write to the mbuf to set the flags
		 * and all the other initialization fields. Extracting the
		 * appropriate flags means that we have to do a shift and blend
		 * for each mbuf before we do the write. However, we can also
		 * add in the previously computed rx_descriptor fields to
		 * make a single 256-bit write per mbuf
		 */
		/* check the structure matches expectations */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
				 offsetof(struct rte_mbuf, rearm_data) + 8);
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
				 RTE_ALIGN(offsetof(struct rte_mbuf,
						    rearm_data),
					   16));
		/* build up data and do writes */
		__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
			rearm6, rearm7;
		rearm6 = _mm256_blend_epi32(mbuf_init,
					    _mm256_slli_si256(mbuf_flags, 8),
					    0x04);
		rearm4 = _mm256_blend_epi32(mbuf_init,
					    _mm256_slli_si256(mbuf_flags, 4),
					    0x04);
		rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
		rearm0 = _mm256_blend_epi32(mbuf_init,
					    _mm256_srli_si256(mbuf_flags, 4),
					    0x04);
		/* permute to add in the rx_descriptor e.g. rss fields */
		rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
		rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
		rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
		rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
		/* write to mbuf */
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
				    rearm6);
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
				    rearm4);
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
				    rearm2);
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
				    rearm0);

		/* repeat for the odd mbufs */
		const __m256i odd_flags =
			_mm256_castsi128_si256
				(_mm256_extracti128_si256(mbuf_flags, 1));
		rearm7 = _mm256_blend_epi32(mbuf_init,
					    _mm256_slli_si256(odd_flags, 8),
					    0x04);
		rearm5 = _mm256_blend_epi32(mbuf_init,
					    _mm256_slli_si256(odd_flags, 4),
					    0x04);
		rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
		rearm1 = _mm256_blend_epi32(mbuf_init,
					    _mm256_srli_si256(odd_flags, 4),
					    0x04);
		/* since odd mbufs are already in hi 128-bits use blend */
		rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
		rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
		rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
		rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
		/* again write to mbufs */
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
				    rearm7);
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
				    rearm5);
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
				    rearm3);
		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
				    rearm1);

		/* extract and record EOP bit */
		if (split_packet) {
			const __m128i eop_mask =
				_mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
			const __m256i eop_bits256 = _mm256_and_si256(status0_7,
								     eop_check);
			/* pack status bits into a single 128-bit register */
			const __m128i eop_bits =
				_mm_packus_epi32
					(_mm256_castsi256_si128(eop_bits256),
					 _mm256_extractf128_si256(eop_bits256,
								  1));
			/**
			 * flip bits, and mask out the EOP bit, which is now
			 * a split-packet bit i.e. !EOP, rather than EOP one.
			 */
			__m128i split_bits = _mm_andnot_si128(eop_bits,
					eop_mask);
			/**
			 * eop bits are out of order, so we need to shuffle them
			 * back into order again. In doing so, only use low 8
			 * bits, which acts like another pack instruction
			 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
			 * [Since we use epi8, the 16-bit positions are
			 * multiplied by 2 in the eop_shuffle value.]
			 */
			__m128i eop_shuffle =
				_mm_set_epi8(/* zero hi 64b */
					     0xFF, 0xFF, 0xFF, 0xFF,
					     0xFF, 0xFF, 0xFF, 0xFF,
					     /* move values to lo 64b */
					     8, 0, 10, 2,
					     12, 4, 14, 6);
			split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
			*(uint64_t *)split_packet =
				_mm_cvtsi128_si64(split_bits);
			split_packet += IAVF_DESCS_PER_LOOP_AVX;
		}

		/* perform dd_check */
		status0_7 = _mm256_and_si256(status0_7, dd_check);
		status0_7 = _mm256_packs_epi32(status0_7,
					       _mm256_setzero_si256());

		uint64_t burst = __builtin_popcountll
					(_mm_cvtsi128_si64
						(_mm256_extracti128_si256
							(status0_7, 1)));
		burst += __builtin_popcountll
				(_mm_cvtsi128_si64
					(_mm256_castsi256_si128(status0_7)));
		received += burst;
		if (burst != IAVF_DESCS_PER_LOOP_AVX)
			break;
	}

	/* update tail pointers */
	rxq->rx_tail += received;
	rxq->rx_tail &= (rxq->nb_rx_desc - 1);
	if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
		rxq->rx_tail--;
		received--;
	}
	rxq->rxrearm_nb += received;
	return received;
}

/**
 * Notice:
 * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
 */
uint16_t
iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
			uint16_t nb_pkts)
{
	return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
}

/**
 * vPMD receive routine that reassembles single burst of 32 scattered packets
 * Notice:
 * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
 */
static uint16_t
iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
				   uint16_t nb_pkts)
{
	struct iavf_rx_queue *rxq = rx_queue;
	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};

	/* get some new buffers */
	uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
						       split_flags);
	if (nb_bufs == 0)
		return 0;

	/* happy day case, full burst + no packets to be joined */
	const uint64_t *split_fl64 = (uint64_t *)split_flags;

	if (!rxq->pkt_first_seg &&
	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
	    split_fl64[2] == 0 && split_fl64[3] == 0)
		return nb_bufs;

	/* reassemble any packets that need reassembly*/
	unsigned int i = 0;

	if (!rxq->pkt_first_seg) {
		/* find the first split flag, and only reassemble then*/
		while (i < nb_bufs && !split_flags[i])
			i++;
		if (i == nb_bufs)
			return nb_bufs;
		rxq->pkt_first_seg = rx_pkts[i];
	}
	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
					     &split_flags[i]);
}

/**
 * vPMD receive routine that reassembles scattered packets.
 * Main receive routine that can handle arbitrary burst sizes
 * Notice:
 * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
 */
uint16_t
iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
				  uint16_t nb_pkts)
{
	uint16_t retval = 0;

	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
		uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
				rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
		retval += burst;
		nb_pkts -= burst;
		if (burst < IAVF_VPMD_RX_MAX_BURST)
			return retval;
	}
	return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
				rx_pkts + retval, nb_pkts);
}

static inline void
iavf_vtx1(volatile struct iavf_tx_desc *txdp,
	  struct rte_mbuf *pkt, uint64_t flags)
{
	uint64_t high_qw =
		(IAVF_TX_DESC_DTYPE_DATA |
		 ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
		 ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));

	__m128i descriptor = _mm_set_epi64x(high_qw,
				pkt->buf_physaddr + pkt->data_off);
	_mm_store_si128((__m128i *)txdp, descriptor);
}

static inline void
iavf_vtx(volatile struct iavf_tx_desc *txdp,
	 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
{
	const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
			((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT));

	/* if unaligned on 32-bit boundary, do one to align */
	if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
		iavf_vtx1(txdp, *pkt, flags);
		nb_pkts--, txdp++, pkt++;
	}

	/* do two at a time while possible, in bursts */
	for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
		uint64_t hi_qw3 =
			hi_qw_tmpl |
			((uint64_t)pkt[3]->data_len <<
			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
		uint64_t hi_qw2 =
			hi_qw_tmpl |
			((uint64_t)pkt[2]->data_len <<
			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
		uint64_t hi_qw1 =
			hi_qw_tmpl |
			((uint64_t)pkt[1]->data_len <<
			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
		uint64_t hi_qw0 =
			hi_qw_tmpl |
			((uint64_t)pkt[0]->data_len <<
			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);

		__m256i desc2_3 =
			_mm256_set_epi64x
				(hi_qw3,
				 pkt[3]->buf_physaddr + pkt[3]->data_off,
				 hi_qw2,
				 pkt[2]->buf_physaddr + pkt[2]->data_off);
		__m256i desc0_1 =
			_mm256_set_epi64x
				(hi_qw1,
				 pkt[1]->buf_physaddr + pkt[1]->data_off,
				 hi_qw0,
				 pkt[0]->buf_physaddr + pkt[0]->data_off);
		_mm256_store_si256((void *)(txdp + 2), desc2_3);
		_mm256_store_si256((void *)txdp, desc0_1);
	}

	/* do any last ones */
	while (nb_pkts) {
		iavf_vtx1(txdp, *pkt, flags);
		txdp++, pkt++, nb_pkts--;
	}
}

static inline uint16_t
iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
			       uint16_t nb_pkts)
{
	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
	volatile struct iavf_tx_desc *txdp;
	struct iavf_tx_entry *txep;
	uint16_t n, nb_commit, tx_id;
	uint64_t flags = IAVF_TX_DESC_CMD_EOP;
	uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP;

	/* cross rx_thresh boundary is not allowed */
	nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);

	if (txq->nb_free < txq->free_thresh)
		iavf_tx_free_bufs(txq);

	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
	if (unlikely(nb_pkts == 0))
		return 0;

	tx_id = txq->tx_tail;
	txdp = &txq->tx_ring[tx_id];
	txep = &txq->sw_ring[tx_id];

	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);

	n = (uint16_t)(txq->nb_tx_desc - tx_id);
	if (nb_commit >= n) {
		tx_backlog_entry(txep, tx_pkts, n);

		iavf_vtx(txdp, tx_pkts, n - 1, flags);
		tx_pkts += (n - 1);
		txdp += (n - 1);

		iavf_vtx1(txdp, *tx_pkts++, rs);

		nb_commit = (uint16_t)(nb_commit - n);

		tx_id = 0;
		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);

		/* avoid reach the end of ring */
		txdp = &txq->tx_ring[tx_id];
		txep = &txq->sw_ring[tx_id];
	}

	tx_backlog_entry(txep, tx_pkts, nb_commit);

	iavf_vtx(txdp, tx_pkts, nb_commit, flags);

	tx_id = (uint16_t)(tx_id + nb_commit);
	if (tx_id > txq->next_rs) {
		txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
			rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
					 IAVF_TXD_QW1_CMD_SHIFT);
		txq->next_rs =
			(uint16_t)(txq->next_rs + txq->rs_thresh);
	}

	txq->tx_tail = tx_id;

	IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);

	return nb_pkts;
}

uint16_t
iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
			uint16_t nb_pkts)
{
	uint16_t nb_tx = 0;
	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;

	while (nb_pkts) {
		uint16_t ret, num;

		num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
		ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
						     num);
		nb_tx += ret;
		nb_pkts -= ret;
		if (ret < num)
			break;
	}

	return nb_tx;
}