summaryrefslogtreecommitdiff
path: root/drivers/net/bnxt/bnxt_rxr.c
blob: 3b713c24270197a2957bf9e79e18b84b27cf8648 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2014-2018 Broadcom
 * All rights reserved.
 */

#include <inttypes.h>
#include <stdbool.h>

#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>

#include "bnxt.h"
#include "bnxt_ring.h"
#include "bnxt_rxr.h"
#include "bnxt_rxq.h"
#include "hsi_struct_def_dpdk.h"
#ifdef RTE_LIBRTE_IEEE1588
#include "bnxt_hwrm.h"
#endif

/*
 * RX Ring handling
 */

static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
{
	struct rte_mbuf *data;

	data = rte_mbuf_raw_alloc(mb);

	return data;
}

static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
				     struct bnxt_rx_ring_info *rxr,
				     uint16_t prod)
{
	struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
	struct rte_mbuf *mbuf;

	mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
	if (!mbuf) {
		rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
		return -ENOMEM;
	}

	rx_buf->mbuf = mbuf;
	mbuf->data_off = RTE_PKTMBUF_HEADROOM;

	rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));

	return 0;
}

static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
				     struct bnxt_rx_ring_info *rxr,
				     uint16_t prod)
{
	struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
	struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
	struct rte_mbuf *mbuf;

	if (rxbd == NULL) {
		PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
		return -EINVAL;
	}

	if (rx_buf == NULL) {
		PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
		return -EINVAL;
	}

	mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
	if (!mbuf) {
		rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
		return -ENOMEM;
	}

	rx_buf->mbuf = mbuf;
	mbuf->data_off = RTE_PKTMBUF_HEADROOM;

	rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));

	return 0;
}

static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
			       struct rte_mbuf *mbuf)
{
	uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
	struct bnxt_sw_rx_bd *prod_rx_buf;
	struct rx_prod_pkt_bd *prod_bd;

	prod_rx_buf = &rxr->rx_buf_ring[prod];

	RTE_ASSERT(prod_rx_buf->mbuf == NULL);
	RTE_ASSERT(mbuf != NULL);

	prod_rx_buf->mbuf = mbuf;

	prod_bd = &rxr->rx_desc_ring[prod];

	prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));

	rxr->rx_prod = prod;
}

static inline
struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
				     uint16_t cons)
{
	struct bnxt_sw_rx_bd *cons_rx_buf;
	struct rte_mbuf *mbuf;

	cons_rx_buf = &rxr->rx_buf_ring[cons];
	RTE_ASSERT(cons_rx_buf->mbuf != NULL);
	mbuf = cons_rx_buf->mbuf;
	cons_rx_buf->mbuf = NULL;
	return mbuf;
}

static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
			   struct rx_tpa_start_cmpl *tpa_start,
			   struct rx_tpa_start_cmpl_hi *tpa_start1)
{
	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
	uint16_t agg_id;
	uint16_t data_cons;
	struct bnxt_tpa_info *tpa_info;
	struct rte_mbuf *mbuf;

	agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);

	data_cons = tpa_start->opaque;
	tpa_info = &rxr->tpa_info[agg_id];

	mbuf = bnxt_consume_rx_buf(rxr, data_cons);

	bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);

	tpa_info->agg_count = 0;
	tpa_info->mbuf = mbuf;
	tpa_info->len = rte_le_to_cpu_32(tpa_start->len);

	mbuf->nb_segs = 1;
	mbuf->next = NULL;
	mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
	mbuf->data_len = mbuf->pkt_len;
	mbuf->port = rxq->port_id;
	mbuf->ol_flags = PKT_RX_LRO;
	if (likely(tpa_start->flags_type &
		   rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
		mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
		mbuf->ol_flags |= PKT_RX_RSS_HASH;
	} else {
		mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
		mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
	}
	if (tpa_start1->flags2 &
	    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
		mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
		mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
	}
	if (likely(tpa_start1->flags2 &
		   rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
		mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;

	/* recycle next mbuf */
	data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
	bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
}

static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
		uint8_t agg_bufs, uint32_t raw_cp_cons)
{
	uint16_t last_cp_cons;
	struct rx_pkt_cmpl *agg_cmpl;

	raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
	last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
	agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
	cpr->valid = FLIP_VALID(raw_cp_cons,
				cpr->cp_ring_struct->ring_mask,
				cpr->valid);
	return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
}

/* TPA consume agg buffer out of order, allocate connected data only */
static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
{
	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
	uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);

	/* TODO batch allocation for better performance */
	while (rte_bitmap_get(rxr->ag_bitmap, next)) {
		if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
			PMD_DRV_LOG(ERR,
				"agg mbuf alloc failed: prod=0x%x\n", next);
			break;
		}
		rte_bitmap_clear(rxr->ag_bitmap, next);
		rxr->ag_prod = next;
		next = RING_NEXT(rxr->ag_ring_struct, next);
	}

	return 0;
}

static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
			 struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
			 uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
{
	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
	int i;
	uint16_t cp_cons, ag_cons;
	struct rx_pkt_cmpl *rxcmp;
	struct rte_mbuf *last = mbuf;
	bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);

	for (i = 0; i < agg_buf; i++) {
		struct bnxt_sw_rx_bd *ag_buf;
		struct rte_mbuf *ag_mbuf;

		if (is_thor_tpa) {
			rxcmp = (void *)&tpa_info->agg_arr[i];
		} else {
			*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
			cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
			rxcmp = (struct rx_pkt_cmpl *)
					&cpr->cp_desc_ring[cp_cons];
		}

#ifdef BNXT_DEBUG
		bnxt_dump_cmpl(cp_cons, rxcmp);
#endif

		ag_cons = rxcmp->opaque;
		RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
		ag_buf = &rxr->ag_buf_ring[ag_cons];
		ag_mbuf = ag_buf->mbuf;
		RTE_ASSERT(ag_mbuf != NULL);

		ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);

		mbuf->nb_segs++;
		mbuf->pkt_len += ag_mbuf->data_len;

		last->next = ag_mbuf;
		last = ag_mbuf;

		ag_buf->mbuf = NULL;

		/*
		 * As aggregation buffer consumed out of order in TPA module,
		 * use bitmap to track freed slots to be allocated and notified
		 * to NIC
		 */
		rte_bitmap_set(rxr->ag_bitmap, ag_cons);
	}
	bnxt_prod_ag_mbuf(rxq);
	return 0;
}

static inline struct rte_mbuf *bnxt_tpa_end(
		struct bnxt_rx_queue *rxq,
		uint32_t *raw_cp_cons,
		struct rx_tpa_end_cmpl *tpa_end,
		struct rx_tpa_end_cmpl_hi *tpa_end1)
{
	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
	uint16_t agg_id;
	struct rte_mbuf *mbuf;
	uint8_t agg_bufs;
	uint8_t payload_offset;
	struct bnxt_tpa_info *tpa_info;

	if (BNXT_CHIP_THOR(rxq->bp)) {
		struct rx_tpa_v2_end_cmpl *th_tpa_end;
		struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;

		th_tpa_end = (void *)tpa_end;
		th_tpa_end1 = (void *)tpa_end1;
		agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
		agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
		payload_offset = th_tpa_end1->payload_offset;
	} else {
		agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
		agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
		if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
			return NULL;
		payload_offset = tpa_end->payload_offset;
	}

	tpa_info = &rxr->tpa_info[agg_id];
	mbuf = tpa_info->mbuf;
	RTE_ASSERT(mbuf != NULL);

	rte_prefetch0(mbuf);
	if (agg_bufs) {
		bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
	}
	mbuf->l4_len = payload_offset;

	struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
	RTE_ASSERT(new_data != NULL);
	if (!new_data) {
		rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
		return NULL;
	}
	tpa_info->mbuf = new_data;

	return mbuf;
}

static uint32_t
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
{
	uint32_t l3, pkt_type = 0;
	uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
	uint32_t flags_type;

	vlan = !!(rxcmp1->flags2 &
		rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
	pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;

	t_ipcs = !!(rxcmp1->flags2 &
		rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
	ip6 = !!(rxcmp1->flags2 &
		 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));

	flags_type = rxcmp->flags_type &
		rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);

	if (!t_ipcs && !ip6)
		l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
	else if (!t_ipcs && ip6)
		l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
	else if (t_ipcs && !ip6)
		l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
	else
		l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;

	switch (flags_type) {
	case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
		if (!t_ipcs)
			pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
		else
			pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
		break;

	case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
		if (!t_ipcs)
			pkt_type |= l3 | RTE_PTYPE_L4_TCP;
		else
			pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
		break;

	case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
		if (!t_ipcs)
			pkt_type |= l3 | RTE_PTYPE_L4_UDP;
		else
			pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
		break;

	case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
		pkt_type |= l3;
		break;
	}

	return pkt_type;
}

#ifdef RTE_LIBRTE_IEEE1588
static void
bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
{
	uint64_t systime_cycles = 0;

	if (!BNXT_CHIP_THOR(bp))
		return;

	/* On Thor, Rx timestamps are provided directly in the
	 * Rx completion records to the driver. Only 32 bits of
	 * the timestamp is present in the completion. Driver needs
	 * to read the current 48 bit free running timer using the
	 * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
	 * from the HWRM response with the lower 32 bits in the
	 * Rx completion to produce the 48 bit timestamp for the Rx packet
	 */
	bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
				&systime_cycles);
	bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
	bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
}
#endif

static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
			    struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
{
	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
	struct rx_pkt_cmpl *rxcmp;
	struct rx_pkt_cmpl_hi *rxcmp1;
	uint32_t tmp_raw_cons = *raw_cons;
	uint16_t cons, prod, cp_cons =
	    RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
	struct rte_mbuf *mbuf;
	int rc = 0;
	uint8_t agg_buf = 0;
	uint16_t cmp_type;
	uint32_t flags2_f = 0;
	uint16_t flags_type;

	rxcmp = (struct rx_pkt_cmpl *)
	    &cpr->cp_desc_ring[cp_cons];

	cmp_type = CMP_TYPE(rxcmp);

	if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
		struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
		uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
		struct bnxt_tpa_info *tpa_info;

		tpa_info = &rxr->tpa_info[agg_id];
		RTE_ASSERT(tpa_info->agg_count < 16);
		tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
		rc = -EINVAL; /* Continue w/o new mbuf */
		goto next_rx;
	}

	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
	cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
	rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];

	if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
		return -EBUSY;

	cpr->valid = FLIP_VALID(cp_cons,
				cpr->cp_ring_struct->ring_mask,
				cpr->valid);

	if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
		bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
			       (struct rx_tpa_start_cmpl_hi *)rxcmp1);
		rc = -EINVAL; /* Continue w/o new mbuf */
		goto next_rx;
	} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
		mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
				   (struct rx_tpa_end_cmpl *)rxcmp,
				   (struct rx_tpa_end_cmpl_hi *)rxcmp1);
		if (unlikely(!mbuf))
			return -EBUSY;
		*rx_pkt = mbuf;
		goto next_rx;
	} else if (cmp_type != 0x11) {
		rc = -EINVAL;
		goto next_rx;
	}

	agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
			>> RX_PKT_CMPL_AGG_BUFS_SFT;
	if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
		return -EBUSY;

	prod = rxr->rx_prod;

	cons = rxcmp->opaque;
	mbuf = bnxt_consume_rx_buf(rxr, cons);
	if (mbuf == NULL)
		return -EBUSY;

	rte_prefetch0(mbuf);

	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
	mbuf->nb_segs = 1;
	mbuf->next = NULL;
	mbuf->pkt_len = rxcmp->len;
	mbuf->data_len = mbuf->pkt_len;
	mbuf->port = rxq->port_id;
	mbuf->ol_flags = 0;

	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
	if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
		mbuf->hash.rss = rxcmp->rss_hash;
		mbuf->ol_flags |= PKT_RX_RSS_HASH;
	} else {
		mbuf->hash.fdir.id = rxcmp1->cfa_code;
		mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
	}
#ifdef RTE_LIBRTE_IEEE1588
	if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
		     RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
		mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
		bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
	}
#endif
	if (agg_buf)
		bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);

	if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
		mbuf->vlan_tci = rxcmp1->metadata &
			(RX_PKT_CMPL_METADATA_VID_MASK |
			RX_PKT_CMPL_METADATA_DE |
			RX_PKT_CMPL_METADATA_PRI_MASK);
		mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
	}

	flags2_f = flags2_0xf(rxcmp1);
	/* IP Checksum */
	if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) {
		if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
			mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
		else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
			mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
		else
			mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
	} else if (IS_IP_TUNNEL_PKT(flags2_f)) {
		if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
			     RX_CMP_IP_CS_ERROR(rxcmp1)))
			mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
		else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
			mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
		else
			mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
	}

	/* L4 Checksum */
	if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
		if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
			mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
		else
			mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
	} else if (IS_L4_TUNNEL_PKT(flags2_f)) {
		if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
			mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
		else
			mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
		if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
			mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
		} else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
				    (flags2_f))) {
			mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
		} else {
			mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
		}
	} else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
		mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
	}

	mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);

#ifdef BNXT_DEBUG
	if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
		/* Re-install the mbuf back to the rx ring */
		bnxt_reuse_rx_mbuf(rxr, cons, mbuf);

		rc = -EIO;
		goto next_rx;
	}
#endif
	/*
	 * TODO: Redesign this....
	 * If the allocation fails, the packet does not get received.
	 * Simply returning this will result in slowly falling behind
	 * on the producer ring buffers.
	 * Instead, "filling up" the producer just before ringing the
	 * doorbell could be a better solution since it will let the
	 * producer ring starve until memory is available again pushing
	 * the drops into hardware and getting them out of the driver
	 * allowing recovery to a full producer ring.
	 *
	 * This could also help with cache usage by preventing per-packet
	 * calls in favour of a tight loop with the same function being called
	 * in it.
	 */
	prod = RING_NEXT(rxr->rx_ring_struct, prod);
	if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
		PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
		rc = -ENOMEM;
		goto rx;
	}
	rxr->rx_prod = prod;
	/*
	 * All MBUFs are allocated with the same size under DPDK,
	 * no optimization for rx_copy_thresh
	 */
rx:
	*rx_pkt = mbuf;

next_rx:

	*raw_cons = tmp_raw_cons;

	return rc;
}

uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
			       uint16_t nb_pkts)
{
	struct bnxt_rx_queue *rxq = rx_queue;
	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
	uint32_t raw_cons = cpr->cp_raw_cons;
	uint32_t cons;
	int nb_rx_pkts = 0;
	struct rx_pkt_cmpl *rxcmp;
	uint16_t prod = rxr->rx_prod;
	uint16_t ag_prod = rxr->ag_prod;
	int rc = 0;
	bool evt = false;

	if (unlikely(is_bnxt_in_error(rxq->bp)))
		return 0;

	/* If Rx Q was stopped return */
	if (unlikely(!rxq->rx_started ||
		     !rte_spinlock_trylock(&rxq->lock)))
		return 0;

	/* Handle RX burst request */
	while (1) {
		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
		rte_prefetch0(&cpr->cp_desc_ring[cons]);
		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];

		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
			break;
		cpr->valid = FLIP_VALID(cons,
					cpr->cp_ring_struct->ring_mask,
					cpr->valid);

		/* TODO: Avoid magic numbers... */
		if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
			rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
			if (likely(!rc) || rc == -ENOMEM)
				nb_rx_pkts++;
			if (rc == -EBUSY)	/* partial completion */
				break;
		} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
			evt =
			bnxt_event_hwrm_resp_handler(rxq->bp,
						     (struct cmpl_base *)rxcmp);
			/* If the async event is Fatal error, return */
			if (unlikely(is_bnxt_in_error(rxq->bp)))
				goto done;
		}

		raw_cons = NEXT_RAW_CMP(raw_cons);
		if (nb_rx_pkts == nb_pkts || evt)
			break;
		/* Post some Rx buf early in case of larger burst processing */
		if (nb_rx_pkts == BNXT_RX_POST_THRESH)
			bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
	}

	cpr->cp_raw_cons = raw_cons;
	if (!nb_rx_pkts && !evt) {
		/*
		 * For PMD, there is no need to keep on pushing to REARM
		 * the doorbell if there are no new completions
		 */
		goto done;
	}

	if (prod != rxr->rx_prod)
		bnxt_db_write(&rxr->rx_db, rxr->rx_prod);

	/* Ring the AGG ring DB */
	if (ag_prod != rxr->ag_prod)
		bnxt_db_write(&rxr->ag_db, rxr->ag_prod);

	bnxt_db_cq(cpr);

	/* Attempt to alloc Rx buf in case of a previous allocation failure. */
	if (rc == -ENOMEM) {
		int i;

		for (i = prod; i <= nb_rx_pkts;
			i = RING_NEXT(rxr->rx_ring_struct, i)) {
			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];

			/* Buffer already allocated for this index. */
			if (rx_buf->mbuf != NULL)
				continue;

			/* This slot is empty. Alloc buffer for Rx */
			if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
				rxr->rx_prod = i;
				bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
			} else {
				PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
				break;
			}
		}
	}

done:
	rte_spinlock_unlock(&rxq->lock);

	return nb_rx_pkts;
}

/*
 * Dummy DPDK callback for RX.
 *
 * This function is used to temporarily replace the real callback during
 * unsafe control operations on the queue, or in case of error.
 */
uint16_t
bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
		     struct rte_mbuf **rx_pkts __rte_unused,
		     uint16_t nb_pkts __rte_unused)
{
	return 0;
}

void bnxt_free_rx_rings(struct bnxt *bp)
{
	int i;
	struct bnxt_rx_queue *rxq;

	if (!bp->rx_queues)
		return;

	for (i = 0; i < (int)bp->rx_nr_rings; i++) {
		rxq = bp->rx_queues[i];
		if (!rxq)
			continue;

		bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
		rte_free(rxq->rx_ring->rx_ring_struct);

		/* Free the Aggregator ring */
		bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
		rte_free(rxq->rx_ring->ag_ring_struct);
		rxq->rx_ring->ag_ring_struct = NULL;

		rte_free(rxq->rx_ring);

		bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
		rte_free(rxq->cp_ring->cp_ring_struct);
		rte_free(rxq->cp_ring);

		rte_free(rxq);
		bp->rx_queues[i] = NULL;
	}
}

int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
{
	struct bnxt_cp_ring_info *cpr;
	struct bnxt_rx_ring_info *rxr;
	struct bnxt_ring *ring;

	rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);

	rxr = rte_zmalloc_socket("bnxt_rx_ring",
				 sizeof(struct bnxt_rx_ring_info),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (rxr == NULL)
		return -ENOMEM;
	rxq->rx_ring = rxr;

	ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
				   sizeof(struct bnxt_ring),
				   RTE_CACHE_LINE_SIZE, socket_id);
	if (ring == NULL)
		return -ENOMEM;
	rxr->rx_ring_struct = ring;
	ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
	ring->ring_mask = ring->ring_size - 1;
	ring->bd = (void *)rxr->rx_desc_ring;
	ring->bd_dma = rxr->rx_desc_mapping;
	ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
	ring->vmem = (void **)&rxr->rx_buf_ring;

	cpr = rte_zmalloc_socket("bnxt_rx_ring",
				 sizeof(struct bnxt_cp_ring_info),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (cpr == NULL)
		return -ENOMEM;
	rxq->cp_ring = cpr;

	ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
				   sizeof(struct bnxt_ring),
				   RTE_CACHE_LINE_SIZE, socket_id);
	if (ring == NULL)
		return -ENOMEM;
	cpr->cp_ring_struct = ring;
	ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
					  (2 + AGG_RING_SIZE_FACTOR));
	ring->ring_mask = ring->ring_size - 1;
	ring->bd = (void *)cpr->cp_desc_ring;
	ring->bd_dma = cpr->cp_desc_mapping;
	ring->vmem_size = 0;
	ring->vmem = NULL;

	/* Allocate Aggregator rings */
	ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
				   sizeof(struct bnxt_ring),
				   RTE_CACHE_LINE_SIZE, socket_id);
	if (ring == NULL)
		return -ENOMEM;
	rxr->ag_ring_struct = ring;
	ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
					  AGG_RING_SIZE_FACTOR);
	ring->ring_mask = ring->ring_size - 1;
	ring->bd = (void *)rxr->ag_desc_ring;
	ring->bd_dma = rxr->ag_desc_mapping;
	ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
	ring->vmem = (void **)&rxr->ag_buf_ring;

	return 0;
}

static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
			    uint16_t len)
{
	uint32_t j;
	struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;

	if (!rx_bd_ring)
		return;
	for (j = 0; j < ring->ring_size; j++) {
		rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
		rx_bd_ring[j].len = rte_cpu_to_le_16(len);
		rx_bd_ring[j].opaque = j;
	}
}

int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
{
	struct bnxt_rx_ring_info *rxr;
	struct bnxt_ring *ring;
	uint32_t prod, type;
	unsigned int i;
	uint16_t size;

	size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
	size = RTE_MIN(BNXT_MAX_PKT_LEN, size);

	type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;

	rxr = rxq->rx_ring;
	ring = rxr->rx_ring_struct;
	bnxt_init_rxbds(ring, type, size);

	prod = rxr->rx_prod;
	for (i = 0; i < ring->ring_size; i++) {
		if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
			PMD_DRV_LOG(WARNING,
				"init'ed rx ring %d with %d/%d mbufs only\n",
				rxq->queue_id, i, ring->ring_size);
			break;
		}
		rxr->rx_prod = prod;
		prod = RING_NEXT(rxr->rx_ring_struct, prod);
	}

	ring = rxr->ag_ring_struct;
	type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
	bnxt_init_rxbds(ring, type, size);
	prod = rxr->ag_prod;

	for (i = 0; i < ring->ring_size; i++) {
		if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
			PMD_DRV_LOG(WARNING,
			"init'ed AG ring %d with %d/%d mbufs only\n",
			rxq->queue_id, i, ring->ring_size);
			break;
		}
		rxr->ag_prod = prod;
		prod = RING_NEXT(rxr->ag_ring_struct, prod);
	}
	PMD_DRV_LOG(DEBUG, "AGG Done!\n");

	if (rxr->tpa_info) {
		unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);

		for (i = 0; i < max_aggs; i++) {
			rxr->tpa_info[i].mbuf =
				__bnxt_alloc_rx_data(rxq->mb_pool);
			if (!rxr->tpa_info[i].mbuf) {
				rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
				return -ENOMEM;
			}
		}
	}
	PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");

	return 0;
}