summaryrefslogtreecommitdiff
path: root/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_82575.c
blob: 98346709d278082bdacb43abfca9aec90126280a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
// SPDX-License-Identifier: GPL-2.0
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
  Copyright(c) 2007-2013 Intel Corporation.

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82575EB Gigabit Network Connection
 * 82575EB Gigabit Backplane Connection
 * 82575GB Gigabit Network Connection
 * 82576 Gigabit Network Connection
 * 82576 Quad Port Gigabit Mezzanine Adapter
 * 82580 Gigabit Network Connection
 * I350 Gigabit Network Connection
 */

#include "e1000_api.h"
#include "e1000_i210.h"

static s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
static s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
static s32  e1000_acquire_phy_82575(struct e1000_hw *hw);
static void e1000_release_phy_82575(struct e1000_hw *hw);
static s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
static void e1000_release_nvm_82575(struct e1000_hw *hw);
static s32  e1000_check_for_link_82575(struct e1000_hw *hw);
static s32  e1000_check_for_link_media_swap(struct e1000_hw *hw);
static s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
static s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
					 u16 *duplex);
static s32  e1000_init_hw_82575(struct e1000_hw *hw);
static s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
static s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					   u16 *data);
static s32  e1000_reset_hw_82575(struct e1000_hw *hw);
static s32  e1000_reset_hw_82580(struct e1000_hw *hw);
static s32  e1000_read_phy_reg_82580(struct e1000_hw *hw,
				     u32 offset, u16 *data);
static s32  e1000_write_phy_reg_82580(struct e1000_hw *hw,
				      u32 offset, u16 data);
static s32  e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
					  bool active);
static s32  e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
					  bool active);
static s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
					  bool active);
static s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
static s32  e1000_setup_serdes_link_82575(struct e1000_hw *hw);
static s32  e1000_get_media_type_82575(struct e1000_hw *hw);
static s32  e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
static s32  e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
static s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
					    u32 offset, u16 data);
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
static s32  e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
static s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
						 u16 *speed, u16 *duplex);
static s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
static s32  e1000_reset_init_script_82575(struct e1000_hw *hw);
static s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
						 u16 offset);
static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
						   u16 offset);
static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
static void e1000_clear_vfta_i350(struct e1000_hw *hw);

static void e1000_i2c_start(struct e1000_hw *hw);
static void e1000_i2c_stop(struct e1000_hw *hw);
static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
static bool e1000_get_i2c_data(u32 *i2cctl);

static const u16 e1000_82580_rxpbs_table[] = {
	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
#define E1000_82580_RXPBS_TABLE_SIZE \
	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))


/**
 *  e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 *  @hw: pointer to the HW structure
 *
 *  Called to determine if the I2C pins are being used for I2C or as an
 *  external MDIO interface since the two options are mutually exclusive.
 **/
static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
{
	u32 reg = 0;
	bool ext_mdio = false;

	DEBUGFUNC("e1000_sgmii_uses_mdio_82575");

	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_82576:
		reg = E1000_READ_REG(hw, E1000_MDIC);
		ext_mdio = !!(reg & E1000_MDIC_DEST);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		reg = E1000_READ_REG(hw, E1000_MDICNFG);
		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
		break;
	default:
		break;
	}
	return ext_mdio;
}

/**
 *  e1000_init_phy_params_82575 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u32 ctrl_ext;

	DEBUGFUNC("e1000_init_phy_params_82575");

	phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
	phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		goto out;
	}

	phy->ops.power_up   = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_82575;

	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us	= 100;

	phy->ops.acquire	= e1000_acquire_phy_82575;
	phy->ops.check_reset_block = e1000_check_reset_block_generic;
	phy->ops.commit		= e1000_phy_sw_reset_generic;
	phy->ops.get_cfg_done	= e1000_get_cfg_done_82575;
	phy->ops.release	= e1000_release_phy_82575;

	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);

	if (e1000_sgmii_active_82575(hw)) {
		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
		ctrl_ext |= E1000_CTRL_I2C_ENA;
	} else {
		phy->ops.reset = e1000_phy_hw_reset_generic;
		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
	}

	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	e1000_reset_mdicnfg_82580(hw);

	if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
	} else {
		switch (hw->mac.type) {
		case e1000_82580:
		case e1000_i350:
		case e1000_i354:
			phy->ops.read_reg = e1000_read_phy_reg_82580;
			phy->ops.write_reg = e1000_write_phy_reg_82580;
			break;
		case e1000_i210:
		case e1000_i211:
			phy->ops.read_reg = e1000_read_phy_reg_gs40g;
			phy->ops.write_reg = e1000_write_phy_reg_gs40g;
			break;
		default:
			phy->ops.read_reg = e1000_read_phy_reg_igp;
			phy->ops.write_reg = e1000_write_phy_reg_igp;
		}
	}

	/* Set phy->phy_addr and phy->id. */
	ret_val = e1000_get_phy_id_82575(hw);

	/* Verify phy id and set remaining function pointers */
	switch (phy->id) {
	case M88E1543_E_PHY_ID:
	case I347AT4_E_PHY_ID:
	case M88E1112_E_PHY_ID:
	case M88E1340M_E_PHY_ID:
	case M88E1111_I_PHY_ID:
		phy->type		= e1000_phy_m88;
		phy->ops.check_polarity	= e1000_check_polarity_m88;
		phy->ops.get_info	= e1000_get_phy_info_m88;
		if (phy->id == I347AT4_E_PHY_ID ||
		    phy->id == M88E1112_E_PHY_ID ||
		    phy->id == M88E1340M_E_PHY_ID)
			phy->ops.get_cable_length =
					 e1000_get_cable_length_m88_gen2;
		else if (phy->id == M88E1543_E_PHY_ID)
			phy->ops.get_cable_length =
					 e1000_get_cable_length_m88_gen2;
		else
			phy->ops.get_cable_length = e1000_get_cable_length_m88;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
		/* Check if this PHY is configured for media swap. */
		if (phy->id == M88E1112_E_PHY_ID) {
			u16 data;

			ret_val = phy->ops.write_reg(hw,
						     E1000_M88E1112_PAGE_ADDR,
						     2);
			if (ret_val)
				goto out;

			ret_val = phy->ops.read_reg(hw,
						    E1000_M88E1112_MAC_CTRL_1,
						    &data);
			if (ret_val)
				goto out;

			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
				hw->mac.ops.check_for_link =
						e1000_check_for_link_media_swap;
		}
		break;
	case IGP03E1000_E_PHY_ID:
	case IGP04E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.get_info = e1000_get_phy_info_igp;
		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
		break;
	case I82580_I_PHY_ID:
	case I350_I_PHY_ID:
		phy->type = e1000_phy_82580;
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
					 e1000_phy_force_speed_duplex_82577;
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
		break;
	case I210_I_PHY_ID:
		phy->type		= e1000_phy_i210;
		phy->ops.check_polarity	= e1000_check_polarity_m88;
		phy->ops.get_info	= e1000_get_phy_info_m88;
		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_init_nvm_params_82575 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	u16 size;

	DEBUGFUNC("e1000_init_nvm_params_82575");

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
		     E1000_EECD_SIZE_EX_SHIFT);
	/*
	 * Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;

	/* Just in case size is out of range, cap it to the largest
	 * EEPROM size supported
	 */
	if (size > 15)
		size = 15;

	nvm->word_size = 1 << size;
	if (hw->mac.type < e1000_i210) {
		nvm->opcode_bits = 8;
		nvm->delay_usec = 1;

		switch (nvm->override) {
		case e1000_nvm_override_spi_large:
			nvm->page_size = 32;
			nvm->address_bits = 16;
			break;
		case e1000_nvm_override_spi_small:
			nvm->page_size = 8;
			nvm->address_bits = 8;
			break;
		default:
			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
					    16 : 8;
			break;
		}
		if (nvm->word_size == (1 << 15))
			nvm->page_size = 128;

		nvm->type = e1000_nvm_eeprom_spi;
	} else {
		nvm->type = e1000_nvm_flash_hw;
	}

	/* Function Pointers */
	nvm->ops.acquire = e1000_acquire_nvm_82575;
	nvm->ops.release = e1000_release_nvm_82575;
	if (nvm->word_size < (1 << 15))
		nvm->ops.read = e1000_read_nvm_eerd;
	else
		nvm->ops.read = e1000_read_nvm_spi;

	nvm->ops.write = e1000_write_nvm_spi;
	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
	nvm->ops.update = e1000_update_nvm_checksum_generic;
	nvm->ops.valid_led_default = e1000_valid_led_default_82575;

	/* override generic family function pointers for specific descendants */
	switch (hw->mac.type) {
	case e1000_82580:
		nvm->ops.validate = e1000_validate_nvm_checksum_82580;
		nvm->ops.update = e1000_update_nvm_checksum_82580;
		break;
	case e1000_i350:
	//case e1000_i354:
		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
		nvm->ops.update = e1000_update_nvm_checksum_i350;
		break;
	default:
		break;
	}

	return E1000_SUCCESS;
}

/**
 *  e1000_init_mac_params_82575 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;

	DEBUGFUNC("e1000_init_mac_params_82575");

	/* Derives media type */
	e1000_get_media_type_82575(hw);
	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set uta register count */
	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
	if (mac->type == e1000_82576)
		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
	if (mac->type == e1000_82580)
		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
	if (mac->type == e1000_i350 || mac->type == e1000_i354)
		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;

	/* Enable EEE default settings for EEE supported devices */
	if (mac->type >= e1000_i350)
		dev_spec->eee_disable = false;

	/* Allow a single clear of the SW semaphore on I210 and newer */
	if (mac->type >= e1000_i210)
		dev_spec->clear_semaphore_once = true;

	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC supported; valid only if manageability features are enabled. */
	mac->arc_subsystem_valid =
		!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);

	/* Function pointers */

	/* bus type/speed/width */
	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
	/* reset */
	if (mac->type >= e1000_82580)
		mac->ops.reset_hw = e1000_reset_hw_82580;
	else
	mac->ops.reset_hw = e1000_reset_hw_82575;
	/* hw initialization */
	mac->ops.init_hw = e1000_init_hw_82575;
	/* link setup */
	mac->ops.setup_link = e1000_setup_link_generic;
	/* physical interface link setup */
	mac->ops.setup_physical_interface =
		(hw->phy.media_type == e1000_media_type_copper)
		? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
	/* physical interface shutdown */
	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
	/* physical interface power up */
	mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
	/* check for link */
	mac->ops.check_for_link = e1000_check_for_link_82575;
	/* read mac address */
	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
	/* configure collision distance */
	mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
	/* multicast address update */
	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
	if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
		/* writing VFTA */
		mac->ops.write_vfta = e1000_write_vfta_i350;
		/* clearing VFTA */
		mac->ops.clear_vfta = e1000_clear_vfta_i350;
	} else {
		/* writing VFTA */
		mac->ops.write_vfta = e1000_write_vfta_generic;
		/* clearing VFTA */
		mac->ops.clear_vfta = e1000_clear_vfta_generic;
	}
	if (hw->mac.type >= e1000_82580)
		mac->ops.validate_mdi_setting =
				e1000_validate_mdi_setting_crossover_generic;
	/* ID LED init */
	mac->ops.id_led_init = e1000_id_led_init_generic;
	/* blink LED */
	mac->ops.blink_led = e1000_blink_led_generic;
	/* setup LED */
	mac->ops.setup_led = e1000_setup_led_generic;
	/* cleanup LED */
	mac->ops.cleanup_led = e1000_cleanup_led_generic;
	/* turn on/off LED */
	mac->ops.led_on = e1000_led_on_generic;
	mac->ops.led_off = e1000_led_off_generic;
	/* clear hardware counters */
	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
	/* link info */
	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
	/* get thermal sensor data */
	mac->ops.get_thermal_sensor_data =
				e1000_get_thermal_sensor_data_generic;
	mac->ops.init_thermal_sensor_thresh =
				e1000_init_thermal_sensor_thresh_generic;
	/* acquire SW_FW sync */
	mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
	mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
	if (mac->type >= e1000_i210) {
		mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
		mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
	}

	/* set lan id for port to determine which phy lock to use */
	hw->mac.ops.set_lan_id(hw);

	return E1000_SUCCESS;
}

/**
 *  e1000_init_function_pointers_82575 - Init func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  Called to initialize all function pointers and parameters.
 **/
void e1000_init_function_pointers_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_82575");

	hw->mac.ops.init_params = e1000_init_mac_params_82575;
	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
	hw->phy.ops.init_params = e1000_init_phy_params_82575;
	hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
}

/**
 *  e1000_acquire_phy_82575 - Acquire rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  Acquire access rights to the correct PHY.
 **/
static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
{
	u16 mask = E1000_SWFW_PHY0_SM;

	DEBUGFUNC("e1000_acquire_phy_82575");

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;

	return hw->mac.ops.acquire_swfw_sync(hw, mask);
}

/**
 *  e1000_release_phy_82575 - Release rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.
 **/
static void e1000_release_phy_82575(struct e1000_hw *hw)
{
	u16 mask = E1000_SWFW_PHY0_SM;

	DEBUGFUNC("e1000_release_phy_82575");

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;

	hw->mac.ops.release_swfw_sync(hw, mask);
}

/**
 *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the serial gigabit media independent
 *  interface and stores the retrieved information in data.
 **/
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					  u16 *data)
{
	s32 ret_val = -E1000_ERR_PARAM;

	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
		DEBUGOUT1("PHY Address %u is out of range\n", offset);
		goto out;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset using the serial gigabit
 *  media independent interface.
 **/
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					   u16 data)
{
	s32 ret_val = -E1000_ERR_PARAM;

	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
		DEBUGOUT1("PHY Address %d is out of range\n", offset);
		goto out;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  e1000_get_phy_id_82575 - Retrieve PHY addr and id
 *  @hw: pointer to the HW structure
 *
 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 *  sgmi interface.
 **/
static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val = E1000_SUCCESS;
	u16 phy_id;
	u32 ctrl_ext;
	u32 mdic;

	DEBUGFUNC("e1000_get_phy_id_82575");

	/* i354 devices can have a PHY that needs an extra read for id */
	if (hw->mac.type == e1000_i354)
		e1000_get_phy_id(hw);


	/*
	 * For SGMII PHYs, we try the list of possible addresses until
	 * we find one that works.  For non-SGMII PHYs
	 * (e.g. integrated copper PHYs), an address of 1 should
	 * work.  The result of this function should mean phy->phy_addr
	 * and phy->id are set correctly.
	 */
	if (!e1000_sgmii_active_82575(hw)) {
		phy->addr = 1;
		ret_val = e1000_get_phy_id(hw);
		goto out;
	}

	if (e1000_sgmii_uses_mdio_82575(hw)) {
		switch (hw->mac.type) {
		case e1000_82575:
		case e1000_82576:
			mdic = E1000_READ_REG(hw, E1000_MDIC);
			mdic &= E1000_MDIC_PHY_MASK;
			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
			break;
		case e1000_82580:
		case e1000_i350:
		case e1000_i354:
		case e1000_i210:
		case e1000_i211:
			mdic = E1000_READ_REG(hw, E1000_MDICNFG);
			mdic &= E1000_MDICNFG_PHY_MASK;
			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
			break;
		default:
			ret_val = -E1000_ERR_PHY;
			goto out;
			break;
		}
		ret_val = e1000_get_phy_id(hw);
		goto out;
	}

	/* Power on sgmii phy if it is disabled */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
	E1000_WRITE_FLUSH(hw);
	msec_delay(300);

	/*
	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
	 * Therefore, we need to test 1-7
	 */
	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
		if (ret_val == E1000_SUCCESS) {
			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
				  phy_id, phy->addr);
			/*
			 * At the time of this writing, The M88 part is
			 * the only supported SGMII PHY product.
			 */
			if (phy_id == M88_VENDOR)
				break;
		} else {
			DEBUGOUT1("PHY address %u was unreadable\n",
				  phy->addr);
		}
	}

	/* A valid PHY type couldn't be found. */
	if (phy->addr == 8) {
		phy->addr = 0;
		ret_val = -E1000_ERR_PHY;
	} else {
		ret_val = e1000_get_phy_id(hw);
	}

	/* restore previous sfp cage power state */
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

out:
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY using the serial gigabit media independent interface.
 **/
static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");

	/*
	 * This isn't a true "hard" reset, but is the only reset
	 * available to us at this time.
	 */

	DEBUGOUT("Soft resetting SGMII attached PHY...\n");

	if (!(hw->phy.ops.write_reg))
		goto out;

	/*
	 * SFP documentation requires the following to configure the SPF module
	 * to work on SGMII.  No further documentation is given.
	 */
	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
	if (ret_val)
		goto out;

	ret_val = hw->phy.ops.commit(hw);

out:
	return ret_val;
}

/**
 *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 data;

	DEBUGFUNC("e1000_set_d0_lplu_state_82575");

	if (!(hw->phy.ops.read_reg))
		goto out;

	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		goto out;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
					     data);
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
					    &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
					     data);
		if (ret_val)
			goto out;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
					     data);
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = phy->ops.read_reg(hw,
						    IGP01E1000_PHY_PORT_CONFIG,
						    &data);
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
						     IGP01E1000_PHY_PORT_CONFIG,
						     data);
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = phy->ops.read_reg(hw,
						    IGP01E1000_PHY_PORT_CONFIG,
						    &data);
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
						     IGP01E1000_PHY_PORT_CONFIG,
						     data);
			if (ret_val)
				goto out;
		}
	}

out:
	return ret_val;
}

/**
 *  e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u32 data;

	DEBUGFUNC("e1000_set_d0_lplu_state_82580");

	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);

	if (active) {
		data |= E1000_82580_PM_D0_LPLU;

		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	} else {
		data &= ~E1000_82580_PM_D0_LPLU;

		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD;
	}

	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
	return ret_val;
}

/**
 *  e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u32 data;

	DEBUGFUNC("e1000_set_d3_lplu_state_82580");

	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);

	if (!active) {
		data &= ~E1000_82580_PM_D3_LPLU;
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD;
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_82580_PM_D3_LPLU;
		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	}

	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
	return ret_val;
}

/**
 *  e1000_acquire_nvm_82575 - Request for access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
{
	s32 ret_val;

	DEBUGFUNC("e1000_acquire_nvm_82575");

	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
	if (ret_val)
		goto out;

	/*
	 * Check if there is some access
	 * error this access may hook on
	 */
	if (hw->mac.type == e1000_i350) {
		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
		    E1000_EECD_TIMEOUT)) {
			/* Clear all access error flags */
			E1000_WRITE_REG(hw, E1000_EECD, eecd |
					E1000_EECD_ERROR_CLR);
			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
		}
	}
	if (hw->mac.type == e1000_82580) {
		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
		if (eecd & E1000_EECD_BLOCKED) {
			/* Clear access error flag */
			E1000_WRITE_REG(hw, E1000_EECD, eecd |
					E1000_EECD_BLOCKED);
			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
		}
	}


	ret_val = e1000_acquire_nvm_generic(hw);
	if (ret_val)
		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);

out:
	return ret_val;
}

/**
 *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
static void e1000_release_nvm_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_release_nvm_82575");

	e1000_release_nvm_generic(hw);

	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
}

/**
 *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = E1000_SUCCESS;
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	DEBUGFUNC("e1000_acquire_swfw_sync_82575");

	while (i < timeout) {
		if (e1000_get_hw_semaphore_generic(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask)
		 */
		e1000_put_hw_semaphore_generic(hw);
		msec_delay_irq(5);
		i++;
	}

	if (i == timeout) {
		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);

out:
	return ret_val;
}

/**
 *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	DEBUGFUNC("e1000_release_swfw_sync_82575");

	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
		; /* Empty */

	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);
}

/**
 *  e1000_get_cfg_done_82575 - Read config done bit
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
 *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
 *  would not be able to be reset or change link.
 **/
static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = E1000_SUCCESS;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	DEBUGFUNC("e1000_get_cfg_done_82575");

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_NVM_CFG_DONE_PORT_1;
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_NVM_CFG_DONE_PORT_2;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_NVM_CFG_DONE_PORT_3;
	while (timeout) {
		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
			break;
		msec_delay(1);
		timeout--;
	}
	if (!timeout)
		DEBUGOUT("MNG configuration cycle has not completed.\n");

	/* If EEPROM is not marked present, init the PHY manually */
	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
	    (hw->phy.type == e1000_phy_igp_3))
		e1000_phy_init_script_igp3(hw);

	return ret_val;
}

/**
 *  e1000_get_link_up_info_82575 - Get link speed/duplex info
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  This is a wrapper function, if using the serial gigabit media independent
 *  interface, use PCS to retrieve the link speed and duplex information.
 *  Otherwise, use the generic function to get the link speed and duplex info.
 **/
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
					u16 *duplex)
{
	s32 ret_val;

	DEBUGFUNC("e1000_get_link_up_info_82575");

	if (hw->phy.media_type != e1000_media_type_copper)
		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
							       duplex);
	else
		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
								    duplex);

	return ret_val;
}

/**
 *  e1000_check_for_link_82575 - Check for link
 *  @hw: pointer to the HW structure
 *
 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
 *  use the generic interface for determining link.
 **/
static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 speed, duplex;

	DEBUGFUNC("e1000_check_for_link_82575");

	if (hw->phy.media_type != e1000_media_type_copper) {
		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
							       &duplex);
		/*
		 * Use this flag to determine if link needs to be checked or
		 * not.  If we have link clear the flag so that we do not
		 * continue to check for link.
		 */
		hw->mac.get_link_status = !hw->mac.serdes_has_link;

		/*
		 * Configure Flow Control now that Auto-Neg has completed.
		 * First, we need to restore the desired flow control
		 * settings because we may have had to re-autoneg with a
		 * different link partner.
		 */
		ret_val = e1000_config_fc_after_link_up_generic(hw);
		if (ret_val)
			DEBUGOUT("Error configuring flow control\n");
	} else {
		ret_val = e1000_check_for_copper_link_generic(hw);
	}

	return ret_val;
}

/**
 *  e1000_check_for_link_media_swap - Check which M88E1112 interface linked
 *  @hw: pointer to the HW structure
 *
 *  Poll the M88E1112 interfaces to see which interface achieved link.
 */
static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	u8 port = 0;

	DEBUGFUNC("e1000_check_for_link_media_swap");

	/* Check the copper medium. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
	if (ret_val)
		return ret_val;

	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
	if (ret_val)
		return ret_val;

	if (data & E1000_M88E1112_STATUS_LINK)
		port = E1000_MEDIA_PORT_COPPER;

	/* Check the other medium. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
	if (ret_val)
		return ret_val;

	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
	if (ret_val)
		return ret_val;

	if (data & E1000_M88E1112_STATUS_LINK)
		port = E1000_MEDIA_PORT_OTHER;

	/* Determine if a swap needs to happen. */
	if (port && (hw->dev_spec._82575.media_port != port)) {
		hw->dev_spec._82575.media_port = port;
		hw->dev_spec._82575.media_changed = true;
	} else {
		ret_val = e1000_check_for_link_82575(hw);
	}

	return E1000_SUCCESS;
}

/**
 *  e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
 *  @hw: pointer to the HW structure
 **/
static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
{
	u32 reg;

	DEBUGFUNC("e1000_power_up_serdes_link_82575");

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !e1000_sgmii_active_82575(hw))
		return;

	/* Enable PCS to turn on link */
	reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
	reg |= E1000_PCS_CFG_PCS_EN;
	E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);

	/* Power up the laser */
	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);

	/* flush the write to verify completion */
	E1000_WRITE_FLUSH(hw);
	msec_delay(1);
}

/**
 *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
 *  duplex, then store the values in the pointers provided.
 **/
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
						u16 *speed, u16 *duplex)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 pcs;
	u32 status;

	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");

	/*
	 * Read the PCS Status register for link state. For non-copper mode,
	 * the status register is not accurate. The PCS status register is
	 * used instead.
	 */
	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);

	/*
	 * The link up bit determines when link is up on autoneg.
	 */
	if (pcs & E1000_PCS_LSTS_LINK_OK) {
		mac->serdes_has_link = true;

		/* Detect and store PCS speed */
		if (pcs & E1000_PCS_LSTS_SPEED_1000)
			*speed = SPEED_1000;
		else if (pcs & E1000_PCS_LSTS_SPEED_100)
			*speed = SPEED_100;
		else
			*speed = SPEED_10;

		/* Detect and store PCS duplex */
		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
			*duplex = FULL_DUPLEX;
		else
			*duplex = HALF_DUPLEX;

		/* Check if it is an I354 2.5Gb backplane connection. */
		if (mac->type == e1000_i354) {
			status = E1000_READ_REG(hw, E1000_STATUS);
			if ((status & E1000_STATUS_2P5_SKU) &&
			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
				*speed = SPEED_2500;
				*duplex = FULL_DUPLEX;
				DEBUGOUT("2500 Mbs, ");
				DEBUGOUT("Full Duplex\n");
			}
		}

	} else {
		mac->serdes_has_link = false;
		*speed = 0;
		*duplex = 0;
	}

	return E1000_SUCCESS;
}

/**
 *  e1000_shutdown_serdes_link_82575 - Remove link during power down
 *  @hw: pointer to the HW structure
 *
 *  In the case of serdes shut down sfp and PCS on driver unload
 *  when management pass through is not enabled.
 **/
void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
{
	u32 reg;

	DEBUGFUNC("e1000_shutdown_serdes_link_82575");

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !e1000_sgmii_active_82575(hw))
		return;

	if (!e1000_enable_mng_pass_thru(hw)) {
		/* Disable PCS to turn off link */
		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
		reg &= ~E1000_PCS_CFG_PCS_EN;
		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);

		/* shutdown the laser */
		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
		reg |= E1000_CTRL_EXT_SDP3_DATA;
		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);

		/* flush the write to verify completion */
		E1000_WRITE_FLUSH(hw);
		msec_delay(1);
	}

	return;
}

/**
 *  e1000_reset_hw_82575 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.
 **/
static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	DEBUGFUNC("e1000_reset_hw_82575");

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000_disable_pcie_master_generic(hw);
	if (ret_val)
		DEBUGOUT("PCI-E Master disable polling has failed.\n");

	/* set the completion timeout for interface */
	ret_val = e1000_set_pcie_completion_timeout(hw);
	if (ret_val)
		DEBUGOUT("PCI-E Set completion timeout has failed.\n");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to MAC\n");
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);

	ret_val = e1000_get_auto_rd_done_generic(hw);
	if (ret_val) {
		/*
		 * When auto config read does not complete, do not
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
		DEBUGOUT("Auto Read Done did not complete\n");
	}

	/* If EEPROM is not present, run manual init scripts */
	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
		e1000_reset_init_script_82575(hw);

	/* Clear any pending interrupt events. */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_READ_REG(hw, E1000_ICR);

	/* Install any alternate MAC address into RAR0 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);

	return ret_val;
}

/**
 *  e1000_init_hw_82575 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

	DEBUGFUNC("e1000_init_hw_82575");

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	if (ret_val) {
		DEBUGOUT("Error initializing identification LED\n");
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
	DEBUGOUT("Initializing the IEEE VLAN\n");
	mac->ops.clear_vfta(hw);

	/* Setup the receive address */
	e1000_init_rx_addrs_generic(hw, rar_count);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Zero out the Unicast HASH table */
	DEBUGOUT("Zeroing the UTA\n");
	for (i = 0; i < mac->uta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/* Set the default MTU size */
	hw->dev_spec._82575.mtu = 1500;

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82575(hw);

	return ret_val;
}

/**
 *  e1000_setup_copper_link_82575 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u32 phpm_reg;

	DEBUGFUNC("e1000_setup_copper_link_82575");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	/* Clear Go Link Disconnect bit on supported devices */
	switch (hw->mac.type) {
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
		break;
	default:
		break;
	}

	ret_val = e1000_setup_serdes_link_82575(hw);
	if (ret_val)
		goto out;

	if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
		/* allow time for SFP cage time to power up phy */
		msec_delay(300);

		ret_val = hw->phy.ops.reset(hw);
		if (ret_val) {
			DEBUGOUT("Error resetting the PHY.\n");
			goto out;
		}
	}
	switch (hw->phy.type) {
	case e1000_phy_i210:
	case e1000_phy_m88:
		switch (hw->phy.id) {
		case I347AT4_E_PHY_ID:
		case M88E1112_E_PHY_ID:
		case M88E1340M_E_PHY_ID:
		case M88E1543_E_PHY_ID:
		case I210_I_PHY_ID:
			ret_val = e1000_copper_link_setup_m88_gen2(hw);
			break;
		default:
			ret_val = e1000_copper_link_setup_m88(hw);
			break;
		}
		break;
	case e1000_phy_igp_3:
		ret_val = e1000_copper_link_setup_igp(hw);
		break;
	case e1000_phy_82580:
		ret_val = e1000_copper_link_setup_82577(hw);
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		goto out;

	ret_val = e1000_setup_copper_link_generic(hw);
out:
	return ret_val;
}

/**
 *  e1000_setup_serdes_link_82575 - Setup link for serdes
 *  @hw: pointer to the HW structure
 *
 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
 *  used on copper connections where the serialized gigabit media independent
 *  interface (sgmii), or serdes fiber is being used.  Configures the link
 *  for auto-negotiation or forces speed/duplex.
 **/
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
{
	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
	bool pcs_autoneg;
	s32 ret_val = E1000_SUCCESS;
	u16 data;

	DEBUGFUNC("e1000_setup_serdes_link_82575");

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !e1000_sgmii_active_82575(hw))
		return ret_val;

	/*
	 * On the 82575, SerDes loopback mode persists until it is
	 * explicitly turned off or a power cycle is performed.  A read to
	 * the register does not indicate its status.  Therefore, we ensure
	 * loopback mode is disabled during initialization.
	 */
	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);

	/* power on the sfp cage if present */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
	ctrl_reg |= E1000_CTRL_SLU;

	/* set both sw defined pins on 82575/82576*/
	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;

	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);

	/* default pcs_autoneg to the same setting as mac autoneg */
	pcs_autoneg = hw->mac.autoneg;

	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* sgmii mode lets the phy handle forcing speed/duplex */
		pcs_autoneg = true;
		/* autoneg time out should be disabled for SGMII mode */
		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
		break;
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
		/* disable PCS autoneg and support parallel detect only */
		pcs_autoneg = false;
		/* fall through to default case */
	default:
		if (hw->mac.type == e1000_82575 ||
		    hw->mac.type == e1000_82576) {
			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
			if (ret_val) {
				DEBUGOUT("NVM Read Error\n");
				return ret_val;
			}

			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
				pcs_autoneg = false;
		}

		/*
		 * non-SGMII modes only supports a speed of 1000/Full for the
		 * link so it is best to just force the MAC and let the pcs
		 * link either autoneg or be forced to 1000/Full
		 */
		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
			    E1000_CTRL_FD | E1000_CTRL_FRCDPX;

		/* set speed of 1000/Full if speed/duplex is forced */
		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
		break;
	}

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);

	/*
	 * New SerDes mode allows for forcing speed or autonegotiating speed
	 * at 1gb. Autoneg should be default set by most drivers. This is the
	 * mode that will be compatible with older link partners and switches.
	 * However, both are supported by the hardware and some drivers/tools.
	 */
	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
		 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);

	if (pcs_autoneg) {
		/* Set PCS register for autoneg */
		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */

		/* Disable force flow control for autoneg */
		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;

		/* Configure flow control advertisement for autoneg */
		anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);

		switch (hw->fc.requested_mode) {
		case e1000_fc_full:
		case e1000_fc_rx_pause:
			anadv_reg |= E1000_TXCW_ASM_DIR;
			anadv_reg |= E1000_TXCW_PAUSE;
			break;
		case e1000_fc_tx_pause:
			anadv_reg |= E1000_TXCW_ASM_DIR;
			break;
		default:
			break;
		}

		E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);

		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
	} else {
		/* Set PCS register for forced link */
		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */

		/* Force flow control for forced link */
		reg |= E1000_PCS_LCTL_FORCE_FCTRL;

		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
	}

	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);

	if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
		e1000_force_mac_fc_generic(hw);

	return ret_val;
}

/**
 *  e1000_get_media_type_82575 - derives current media type.
 *  @hw: pointer to the HW structure
 *
 *  The media type is chosen reflecting few settings.
 *  The following are taken into account:
 *  - link mode set in the current port Init Control Word #3
 *  - current link mode settings in CSR register
 *  - MDIO vs. I2C PHY control interface chosen
 *  - SFP module media type
 **/
static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
{
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	s32 ret_val = E1000_SUCCESS;
	u32 ctrl_ext = 0;
	u32 link_mode = 0;

	/* Set internal phy as default */
	dev_spec->sgmii_active = false;
	dev_spec->module_plugged = false;

	/* Get CSR setting */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);

	/* extract link mode setting */
	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;

	switch (link_mode) {
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
		hw->phy.media_type = e1000_media_type_internal_serdes;
		break;
	case E1000_CTRL_EXT_LINK_MODE_GMII:
		hw->phy.media_type = e1000_media_type_copper;
		break;
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* Get phy control interface type set (MDIO vs. I2C)*/
		if (e1000_sgmii_uses_mdio_82575(hw)) {
			hw->phy.media_type = e1000_media_type_copper;
			dev_spec->sgmii_active = true;
			break;
		}
		/* fall through for I2C based SGMII */
	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
		/* read media type from SFP EEPROM */
		ret_val = e1000_set_sfp_media_type_82575(hw);
		if ((ret_val != E1000_SUCCESS) ||
		    (hw->phy.media_type == e1000_media_type_unknown)) {
			/*
			 * If media type was not identified then return media
			 * type defined by the CTRL_EXT settings.
			 */
			hw->phy.media_type = e1000_media_type_internal_serdes;

			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
				hw->phy.media_type = e1000_media_type_copper;
				dev_spec->sgmii_active = true;
			}

			break;
		}

		/* do not change link mode for 100BaseFX */
		if (dev_spec->eth_flags.e100_base_fx)
			break;

		/* change current link mode setting */
		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;

		if (hw->phy.media_type == e1000_media_type_copper)
			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
		else
			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;

		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

		break;
	}

	return ret_val;
}

/**
 *  e1000_set_sfp_media_type_82575 - derives SFP module media type.
 *  @hw: pointer to the HW structure
 *
 *  The media type is chosen based on SFP module.
 *  compatibility flags retrieved from SFP ID EEPROM.
 **/
static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
{
	s32 ret_val = E1000_ERR_CONFIG;
	u32 ctrl_ext = 0;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
	u8 tranceiver_type = 0;
	s32 timeout = 3;

	/* Turn I2C interface ON and power on sfp cage */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);

	E1000_WRITE_FLUSH(hw);

	/* Read SFP module data */
	while (timeout) {
		ret_val = e1000_read_sfp_data_byte(hw,
			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
			&tranceiver_type);
		if (ret_val == E1000_SUCCESS)
			break;
		msec_delay(100);
		timeout--;
	}
	if (ret_val != E1000_SUCCESS)
		goto out;

	ret_val = e1000_read_sfp_data_byte(hw,
			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
			(u8 *)eth_flags);
	if (ret_val != E1000_SUCCESS)
		goto out;

	/* Check if there is some SFP module plugged and powered */
	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
		dev_spec->module_plugged = true;
		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
			hw->phy.media_type = e1000_media_type_internal_serdes;
		} else if (eth_flags->e100_base_fx) {
			dev_spec->sgmii_active = true;
			hw->phy.media_type = e1000_media_type_internal_serdes;
		} else if (eth_flags->e1000_base_t) {
			dev_spec->sgmii_active = true;
			hw->phy.media_type = e1000_media_type_copper;
		} else {
			hw->phy.media_type = e1000_media_type_unknown;
			DEBUGOUT("PHY module has not been recognized\n");
			goto out;
		}
	} else {
		hw->phy.media_type = e1000_media_type_unknown;
	}
	ret_val = E1000_SUCCESS;
out:
	/* Restore I2C interface setting */
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	return ret_val;
}

/**
 *  e1000_valid_led_default_82575 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	DEBUGFUNC("e1000_valid_led_default_82575");

	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		goto out;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
		switch (hw->phy.media_type) {
		case e1000_media_type_internal_serdes:
			*data = ID_LED_DEFAULT_82575_SERDES;
			break;
		case e1000_media_type_copper:
		default:
			*data = ID_LED_DEFAULT;
			break;
		}
	}
out:
	return ret_val;
}

/**
 *  e1000_sgmii_active_82575 - Return sgmii state
 *  @hw: pointer to the HW structure
 *
 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
 *  which can be enabled for use in the embedded applications.  Simply
 *  return the current state of the sgmii interface.
 **/
static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
{
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	return dev_spec->sgmii_active;
}

/**
 *  e1000_reset_init_script_82575 - Inits HW defaults after reset
 *  @hw: pointer to the HW structure
 *
 *  Inits recommended HW defaults after a reset when there is no EEPROM
 *  detected. This is only for the 82575.
 **/
static s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_reset_init_script_82575");

	if (hw->mac.type == e1000_82575) {
		DEBUGOUT("Running reset init script for 82575\n");
		/* SerDes configuration via SERDESCTRL */
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);

		/* CCM configuration via CCMCTL register */
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);

		/* PCIe lanes configuration */
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);

		/* PCIe PLL Configuration */
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
	}

	return E1000_SUCCESS;
}

/**
 *  e1000_read_mac_addr_82575 - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_read_mac_addr_82575");

	/*
	 * If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_mac_addr_generic(hw);

out:
	return ret_val;
}

/**
 *  e1000_config_collision_dist_82575 - Configure collision distance
 *  @hw: pointer to the HW structure
 *
 *  Configures the collision distance to the default value and is used
 *  during link setup.
 **/
static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
{
	u32 tctl_ext;

	DEBUGFUNC("e1000_config_collision_dist_82575");

	tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);

	tctl_ext &= ~E1000_TCTL_EXT_COLD;
	tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;

	E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
	E1000_WRITE_FLUSH(hw);
}

/**
 * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;

	if (!(phy->ops.check_reset_block))
		return;

	/* If the management interface is not enabled, then power down */
	if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);

	return;
}

/**
 *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_clear_hw_cntrs_82575");

	e1000_clear_hw_cntrs_base_generic(hw);

	E1000_READ_REG(hw, E1000_PRC64);
	E1000_READ_REG(hw, E1000_PRC127);
	E1000_READ_REG(hw, E1000_PRC255);
	E1000_READ_REG(hw, E1000_PRC511);
	E1000_READ_REG(hw, E1000_PRC1023);
	E1000_READ_REG(hw, E1000_PRC1522);
	E1000_READ_REG(hw, E1000_PTC64);
	E1000_READ_REG(hw, E1000_PTC127);
	E1000_READ_REG(hw, E1000_PTC255);
	E1000_READ_REG(hw, E1000_PTC511);
	E1000_READ_REG(hw, E1000_PTC1023);
	E1000_READ_REG(hw, E1000_PTC1522);

	E1000_READ_REG(hw, E1000_ALGNERRC);
	E1000_READ_REG(hw, E1000_RXERRC);
	E1000_READ_REG(hw, E1000_TNCRS);
	E1000_READ_REG(hw, E1000_CEXTERR);
	E1000_READ_REG(hw, E1000_TSCTC);
	E1000_READ_REG(hw, E1000_TSCTFC);

	E1000_READ_REG(hw, E1000_MGTPRC);
	E1000_READ_REG(hw, E1000_MGTPDC);
	E1000_READ_REG(hw, E1000_MGTPTC);

	E1000_READ_REG(hw, E1000_IAC);
	E1000_READ_REG(hw, E1000_ICRXOC);

	E1000_READ_REG(hw, E1000_ICRXPTC);
	E1000_READ_REG(hw, E1000_ICRXATC);
	E1000_READ_REG(hw, E1000_ICTXPTC);
	E1000_READ_REG(hw, E1000_ICTXATC);
	E1000_READ_REG(hw, E1000_ICTXQEC);
	E1000_READ_REG(hw, E1000_ICTXQMTC);
	E1000_READ_REG(hw, E1000_ICRXDMTC);

	E1000_READ_REG(hw, E1000_CBTMPC);
	E1000_READ_REG(hw, E1000_HTDPMC);
	E1000_READ_REG(hw, E1000_CBRMPC);
	E1000_READ_REG(hw, E1000_RPTHC);
	E1000_READ_REG(hw, E1000_HGPTC);
	E1000_READ_REG(hw, E1000_HTCBDPC);
	E1000_READ_REG(hw, E1000_HGORCL);
	E1000_READ_REG(hw, E1000_HGORCH);
	E1000_READ_REG(hw, E1000_HGOTCL);
	E1000_READ_REG(hw, E1000_HGOTCH);
	E1000_READ_REG(hw, E1000_LENERRS);

	/* This register should not be read in copper configurations */
	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
	    e1000_sgmii_active_82575(hw))
		E1000_READ_REG(hw, E1000_SCVPC);
}

/**
 *  e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
 *  @hw: pointer to the HW structure
 *
 *  After rx enable if managability is enabled then there is likely some
 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
 *  function clears the fifos and flushes any packets that came in as rx was
 *  being enabled.
 **/
void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
{
	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
	int i, ms_wait;

	DEBUGFUNC("e1000_rx_fifo_workaround_82575");
	if (hw->mac.type != e1000_82575 ||
	    !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
		return;

	/* Disable all Rx queues */
	for (i = 0; i < 4; i++) {
		rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
		E1000_WRITE_REG(hw, E1000_RXDCTL(i),
				rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
	}
	/* Poll all queues to verify they have shut down */
	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
		msec_delay(1);
		rx_enabled = 0;
		for (i = 0; i < 4; i++)
			rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
			break;
	}

	if (ms_wait == 10)
		DEBUGOUT("Queue disable timed out after 10ms\n");

	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
	 * incoming packets are rejected.  Set enable and wait 2ms so that
	 * any packet that was coming in as RCTL.EN was set is flushed
	 */
	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);

	rlpml = E1000_READ_REG(hw, E1000_RLPML);
	E1000_WRITE_REG(hw, E1000_RLPML, 0);

	rctl = E1000_READ_REG(hw, E1000_RCTL);
	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
	temp_rctl |= E1000_RCTL_LPE;

	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
	E1000_WRITE_FLUSH(hw);
	msec_delay(2);

	/* Enable Rx queues that were previously enabled and restore our
	 * previous state
	 */
	for (i = 0; i < 4; i++)
		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
	E1000_WRITE_FLUSH(hw);

	E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);

	/* Flush receive errors generated by workaround */
	E1000_READ_REG(hw, E1000_ROC);
	E1000_READ_REG(hw, E1000_RNBC);
	E1000_READ_REG(hw, E1000_MPC);
}

/**
 *  e1000_set_pcie_completion_timeout - set pci-e completion timeout
 *  @hw: pointer to the HW structure
 *
 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
 *  however the hardware default for these parts is 500us to 1ms which is less
 *  than the 10ms recommended by the pci-e spec.  To address this we need to
 *  increase the value to either 10ms to 200ms for capability version 1 config,
 *  or 16ms to 55ms for version 2.
 **/
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
{
	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
	s32 ret_val = E1000_SUCCESS;
	u16 pcie_devctl2;

	/* only take action if timeout value is defaulted to 0 */
	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
		goto out;

	/*
	 * if capababilities version is type 1 we can write the
	 * timeout of 10ms to 200ms through the GCR register
	 */
	if (!(gcr & E1000_GCR_CAP_VER2)) {
		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
		goto out;
	}

	/*
	 * for version 2 capabilities we need to write the config space
	 * directly in order to set the completion timeout value for
	 * 16ms to 55ms
	 */
	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
					  &pcie_devctl2);
	if (ret_val)
		goto out;

	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;

	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
					   &pcie_devctl2);
out:
	/* disable completion timeout resend */
	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;

	E1000_WRITE_REG(hw, E1000_GCR, gcr);
	return ret_val;
}

/**
 *  e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
 *
 *  enables/disables L2 switch anti-spoofing functionality.
 **/
void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
{
	u32 reg_val, reg_offset;

	switch (hw->mac.type) {
	case e1000_82576:
		reg_offset = E1000_DTXSWC;
		break;
	case e1000_i350:
	case e1000_i354:
		reg_offset = E1000_TXSWC;
		break;
	default:
		return;
	}

	reg_val = E1000_READ_REG(hw, reg_offset);
	if (enable) {
		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
			     E1000_DTXSWC_VLAN_SPOOF_MASK);
		/* The PF can spoof - it has to in order to
		 * support emulation mode NICs
		 */
		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
	} else {
		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
			     E1000_DTXSWC_VLAN_SPOOF_MASK);
	}
	E1000_WRITE_REG(hw, reg_offset, reg_val);
}

/**
 *  e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables L2 switch loopback functionality.
 **/
void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
	u32 dtxswc;

	switch (hw->mac.type) {
	case e1000_82576:
		dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
		break;
	case e1000_i350:
	case e1000_i354:
		dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
		break;
	default:
		/* Currently no other hardware supports loopback */
		break;
	}


}

/**
 *  e1000_vmdq_set_replication_pf - enable or disable vmdq replication
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables replication of packets across multiple pools.
 **/
void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);

	if (enable)
		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
	else
		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;

	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
}

/**
 *  e1000_read_phy_reg_82580 - Read 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the MDI control register in the PHY at offset and stores the
 *  information read to data.
 **/
static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

	DEBUGFUNC("e1000_read_phy_reg_82580");

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  e1000_write_phy_reg_82580 - Write 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

	DEBUGFUNC("e1000_write_phy_reg_82580");

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
 *  @hw: pointer to the HW structure
 *
 *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
 *  the values found in the EEPROM.  This addresses an issue in which these
 *  bits are not restored from EEPROM after reset.
 **/
static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u32 mdicnfg;
	u16 nvm_data = 0;

	DEBUGFUNC("e1000_reset_mdicnfg_82580");

	if (hw->mac.type != e1000_82580)
		goto out;
	if (!e1000_sgmii_active_82575(hw))
		goto out;

	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				   &nvm_data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		goto out;
	}

	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
	if (nvm_data & NVM_WORD24_EXT_MDIO)
		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
	if (nvm_data & NVM_WORD24_COM_MDIO)
		mdicnfg |= E1000_MDICNFG_COM_MDIO;
	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
out:
	return ret_val;
}

/**
 *  e1000_reset_hw_82580 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets function or entire device (all ports, etc.)
 *  to a known state.
 **/
static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	/* BH SW mailbox bit in SW_FW_SYNC */
	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
	u32 ctrl;
	bool global_device_reset = hw->dev_spec._82575.global_device_reset;

	DEBUGFUNC("e1000_reset_hw_82580");

	hw->dev_spec._82575.global_device_reset = false;

	/* 82580 does not reliably do global_device_reset due to hw errata */
	if (hw->mac.type == e1000_82580)
		global_device_reset = false;

	/* Get current control state. */
	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000_disable_pcie_master_generic(hw);
	if (ret_val)
		DEBUGOUT("PCI-E Master disable polling has failed.\n");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	/* Determine whether or not a global dev reset is requested */
	if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
	    swmbsw_mask))
			global_device_reset = false;

	if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
	    E1000_STAT_DEV_RST_SET))
		ctrl |= E1000_CTRL_DEV_RST;
	else
		ctrl |= E1000_CTRL_RST;

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
	E1000_WRITE_FLUSH(hw);

	/* Add delay to insure DEV_RST has time to complete */
	if (global_device_reset)
		msec_delay(5);

	ret_val = e1000_get_auto_rd_done_generic(hw);
	if (ret_val) {
		/*
		 * When auto config read does not complete, do not
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
		DEBUGOUT("Auto Read Done did not complete\n");
	}

	/* clear global device reset status bit */
	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);

	/* Clear any pending interrupt events. */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_READ_REG(hw, E1000_ICR);

	ret_val = e1000_reset_mdicnfg_82580(hw);
	if (ret_val)
		DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");

	/* Install any alternate MAC address into RAR0 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);

	/* Release semaphore */
	if (global_device_reset)
		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);

	return ret_val;
}

/**
 *  e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
 *  @data: data received by reading RXPBS register
 *
 *  The 82580 uses a table based approach for packet buffer allocation sizes.
 *  This function converts the retrieved value into the correct table value
 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
 *  0x0 36  72 144   1   2   4   8  16
 *  0x8 35  70 140 rsv rsv rsv rsv rsv
 */
u16 e1000_rxpbs_adjust_82580(u32 data)
{
	u16 ret_val = 0;

	if (data < E1000_82580_RXPBS_TABLE_SIZE)
		ret_val = e1000_82580_rxpbs_table[data];

	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
{
	s32 ret_val = E1000_SUCCESS;
	u16 checksum = 0;
	u16 i, nvm_data;

	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");

	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error\n");
			goto out;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
		DEBUGOUT("NVM Checksum Invalid\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_with_offset - Update EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
{
	s32 ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");

	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
				    &checksum);
	if (ret_val)
		DEBUGOUT("NVM Write Error while updating checksum.\n");

out:
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 eeprom_regions_count = 1;
	u16 j, nvm_data;
	u16 nvm_offset;

	DEBUGFUNC("e1000_validate_nvm_checksum_82580");

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error\n");
		goto out;
	}

	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
		/* if chekcsums compatibility bit is set validate checksums
		 * for all 4 ports. */
		eeprom_regions_count = 4;
	}

	for (j = 0; j < eeprom_regions_count; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
								  nvm_offset);
		if (ret_val != E1000_SUCCESS)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82580 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 j, nvm_data;
	u16 nvm_offset;

	DEBUGFUNC("e1000_update_nvm_checksum_82580");

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
		DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
		goto out;
	}

	if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
		/* set compatibility bit to validate checksums appropriately */
		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
					    &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
			goto out;
		}
	}

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 j;
	u16 nvm_offset;

	DEBUGFUNC("e1000_validate_nvm_checksum_i350");

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
								  nvm_offset);
		if (ret_val != E1000_SUCCESS)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 j;
	u16 nvm_offset;

	DEBUGFUNC("e1000_update_nvm_checksum_i350");

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val != E1000_SUCCESS)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  __e1000_access_emi_reg - Read/write EMI register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: pointer to value to read/write from/to the EMI address
 *  @read: boolean flag to indicate read or write
 **/
static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
				  u16 *data, bool read)
{
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("__e1000_access_emi_reg");

	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
	else
		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);

	return ret_val;
}

/**
 *  e1000_read_emi_reg - Read Extended Management Interface register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: value to be read from the EMI address
 **/
s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
{
	DEBUGFUNC("e1000_read_emi_reg");

	return __e1000_access_emi_reg(hw, addr, data, true);
}

/**
 *  e1000_set_eee_i350 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.
 *
 **/
s32 e1000_set_eee_i350(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u32 ipcnfg, eeer;

	DEBUGFUNC("e1000_set_eee_i350");

	if ((hw->mac.type < e1000_i350) ||
	    (hw->phy.media_type != e1000_media_type_copper))
		goto out;
	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
	eeer = E1000_READ_REG(hw, E1000_EEER);

	/* enable or disable per user setting */
	if (!(hw->dev_spec._82575.eee_disable)) {
		u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);

		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
			 E1000_EEER_LPI_FC);

		/* This bit should not be set in normal operation. */
		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
	} else {
		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
			  E1000_EEER_LPI_FC);
	}
	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
	E1000_WRITE_REG(hw, E1000_EEER, eeer);
	E1000_READ_REG(hw, E1000_IPCNFG);
	E1000_READ_REG(hw, E1000_EEER);
out:

	return ret_val;
}

/**
 *  e1000_set_eee_i354 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
 *
 **/
s32 e1000_set_eee_i354(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 phy_data;

	DEBUGFUNC("e1000_set_eee_i354");

	if ((hw->phy.media_type != e1000_media_type_copper) ||
	    ((phy->id != M88E1543_E_PHY_ID)))
		goto out;

	if (!hw->dev_spec._82575.eee_disable) {
		/* Switch to PHY page 18. */
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
		if (ret_val)
			goto out;

		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
					    &phy_data);
		if (ret_val)
			goto out;

		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
					     phy_data);
		if (ret_val)
			goto out;

		/* Return the PHY to page 0. */
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
		if (ret_val)
			goto out;

		/* Turn on EEE advertisement. */
		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					       E1000_EEE_ADV_DEV_I354,
					       &phy_data);
		if (ret_val)
			goto out;

		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
			    E1000_EEE_ADV_1000_SUPPORTED;
		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
						E1000_EEE_ADV_DEV_I354,
						phy_data);
	} else {
		/* Turn off EEE advertisement. */
		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					       E1000_EEE_ADV_DEV_I354,
					       &phy_data);
		if (ret_val)
			goto out;

		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
			      E1000_EEE_ADV_1000_SUPPORTED);
		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
						E1000_EEE_ADV_DEV_I354,
						phy_data);
	}

out:
	return ret_val;
}

/**
 *  e1000_get_eee_status_i354 - Get EEE status
 *  @hw: pointer to the HW structure
 *  @status: EEE status
 *
 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
 *  been received.
 **/
s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;
	u16 phy_data;

	DEBUGFUNC("e1000_get_eee_status_i354");

	/* Check if EEE is supported on this device. */
	if ((hw->phy.media_type != e1000_media_type_copper) ||
	    ((phy->id != M88E1543_E_PHY_ID)))
		goto out;

	ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
				       E1000_PCS_STATUS_DEV_I354,
				       &phy_data);
	if (ret_val)
		goto out;

	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;

out:
	return ret_val;
}

/* Due to a hw errata, if the host tries to  configure the VFTA register
 * while performing queries from the BMC or DMA, then the VFTA in some
 * cases won't be written.
 */

/**
 *  e1000_clear_vfta_i350 - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
void e1000_clear_vfta_i350(struct e1000_hw *hw)
{
	u32 offset;
	int i;

	DEBUGFUNC("e1000_clear_vfta_350");

	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
		for (i = 0; i < 10; i++)
			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);

		E1000_WRITE_FLUSH(hw);
	}
}

/**
 *  e1000_write_vfta_i350 - Write value to VLAN filter table
 *  @hw: pointer to the HW structure
 *  @offset: register offset in VLAN filter table
 *  @value: register value written to VLAN filter table
 *
 *  Writes value at the given offset in the register array which stores
 *  the VLAN filter table.
 **/
void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
{
	int i;

	DEBUGFUNC("e1000_write_vfta_350");

	for (i = 0; i < 10; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);

	E1000_WRITE_FLUSH(hw);
}


/**
 *  e1000_set_i2c_bb - Enable I2C bit-bang
 *  @hw: pointer to the HW structure
 *
 *  Enable I2C bit-bang interface
 *
 **/
s32 e1000_set_i2c_bb(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u32 ctrl_ext, i2cparams;

	DEBUGFUNC("e1000_set_i2c_bb");

	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext |= E1000_CTRL_I2C_ENA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	E1000_WRITE_FLUSH(hw);

	i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
	i2cparams |= E1000_I2CBB_EN;
	i2cparams |= E1000_I2C_DATA_OE_N;
	i2cparams |= E1000_I2C_CLK_OE_N;
	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
	E1000_WRITE_FLUSH(hw);

	return ret_val;
}

/**
 *  e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
 **/
s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
				u8 dev_addr, u8 *data)
{
	s32 status = E1000_SUCCESS;
	u32 max_retry = 10;
	u32 retry = 1;
	u16 swfw_mask = 0;

	bool nack = true;

	DEBUGFUNC("e1000_read_i2c_byte_generic");

	swfw_mask = E1000_SWFW_PHY0_SM;

	do {
		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
		    != E1000_SUCCESS) {
			status = E1000_ERR_SWFW_SYNC;
			goto read_byte_out;
		}

		e1000_i2c_start(hw);

		/* Device Address and write indication */
		status = e1000_clock_out_i2c_byte(hw, dev_addr);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_get_i2c_ack(hw);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_clock_out_i2c_byte(hw, byte_offset);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_get_i2c_ack(hw);
		if (status != E1000_SUCCESS)
			goto fail;

		e1000_i2c_start(hw);

		/* Device Address and read indication */
		status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_get_i2c_ack(hw);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_clock_in_i2c_byte(hw, data);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_clock_out_i2c_bit(hw, nack);
		if (status != E1000_SUCCESS)
			goto fail;

		e1000_i2c_stop(hw);
		break;

fail:
		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
		msec_delay(100);
		e1000_i2c_bus_clear(hw);
		retry++;
		if (retry < max_retry)
			DEBUGOUT("I2C byte read error - Retrying.\n");
		else
			DEBUGOUT("I2C byte read error.\n");

	} while (retry < max_retry);

	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

read_byte_out:

	return status;
}

/**
 *  e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
 **/
s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
				 u8 dev_addr, u8 data)
{
	s32 status = E1000_SUCCESS;
	u32 max_retry = 1;
	u32 retry = 0;
	u16 swfw_mask = 0;

	DEBUGFUNC("e1000_write_i2c_byte_generic");

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
		status = E1000_ERR_SWFW_SYNC;
		goto write_byte_out;
	}

	do {
		e1000_i2c_start(hw);

		status = e1000_clock_out_i2c_byte(hw, dev_addr);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_get_i2c_ack(hw);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_clock_out_i2c_byte(hw, byte_offset);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_get_i2c_ack(hw);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_clock_out_i2c_byte(hw, data);
		if (status != E1000_SUCCESS)
			goto fail;

		status = e1000_get_i2c_ack(hw);
		if (status != E1000_SUCCESS)
			goto fail;

		e1000_i2c_stop(hw);
		break;

fail:
		e1000_i2c_bus_clear(hw);
		retry++;
		if (retry < max_retry)
			DEBUGOUT("I2C byte write error - Retrying.\n");
		else
			DEBUGOUT("I2C byte write error.\n");
	} while (retry < max_retry);

	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

write_byte_out:

	return status;
}

/**
 *  e1000_i2c_start - Sets I2C start condition
 *  @hw: pointer to hardware structure
 *
 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
 **/
static void e1000_i2c_start(struct e1000_hw *hw)
{
	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);

	DEBUGFUNC("e1000_i2c_start");

	/* Start condition must begin with data and clock high */
	e1000_set_i2c_data(hw, &i2cctl, 1);
	e1000_raise_i2c_clk(hw, &i2cctl);

	/* Setup time for start condition (4.7us) */
	usec_delay(E1000_I2C_T_SU_STA);

	e1000_set_i2c_data(hw, &i2cctl, 0);

	/* Hold time for start condition (4us) */
	usec_delay(E1000_I2C_T_HD_STA);

	e1000_lower_i2c_clk(hw, &i2cctl);

	/* Minimum low period of clock is 4.7 us */
	usec_delay(E1000_I2C_T_LOW);

}

/**
 *  e1000_i2c_stop - Sets I2C stop condition
 *  @hw: pointer to hardware structure
 *
 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
 **/
static void e1000_i2c_stop(struct e1000_hw *hw)
{
	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);

	DEBUGFUNC("e1000_i2c_stop");

	/* Stop condition must begin with data low and clock high */
	e1000_set_i2c_data(hw, &i2cctl, 0);
	e1000_raise_i2c_clk(hw, &i2cctl);

	/* Setup time for stop condition (4us) */
	usec_delay(E1000_I2C_T_SU_STO);

	e1000_set_i2c_data(hw, &i2cctl, 1);

	/* bus free time between stop and start (4.7us)*/
	usec_delay(E1000_I2C_T_BUF);
}

/**
 *  e1000_clock_in_i2c_byte - Clocks in one byte via I2C
 *  @hw: pointer to hardware structure
 *  @data: data byte to clock in
 *
 *  Clocks in one byte data via I2C data/clock
 **/
static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
{
	s32 i;
	bool bit = 0;

	DEBUGFUNC("e1000_clock_in_i2c_byte");

	*data = 0;
	for (i = 7; i >= 0; i--) {
		e1000_clock_in_i2c_bit(hw, &bit);
		*data |= bit << i;
	}

	return E1000_SUCCESS;
}

/**
 *  e1000_clock_out_i2c_byte - Clocks out one byte via I2C
 *  @hw: pointer to hardware structure
 *  @data: data byte clocked out
 *
 *  Clocks out one byte data via I2C data/clock
 **/
static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
{
	s32 status = E1000_SUCCESS;
	s32 i;
	u32 i2cctl;
	bool bit = 0;

	DEBUGFUNC("e1000_clock_out_i2c_byte");

	for (i = 7; i >= 0; i--) {
		bit = (data >> i) & 0x1;
		status = e1000_clock_out_i2c_bit(hw, bit);

		if (status != E1000_SUCCESS)
			break;
	}

	/* Release SDA line (set high) */
	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);

	i2cctl |= E1000_I2C_DATA_OE_N;
	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
	E1000_WRITE_FLUSH(hw);

	return status;
}

/**
 *  e1000_get_i2c_ack - Polls for I2C ACK
 *  @hw: pointer to hardware structure
 *
 *  Clocks in/out one bit via I2C data/clock
 **/
static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
{
	s32 status = E1000_SUCCESS;
	u32 i = 0;
	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
	u32 timeout = 10;
	bool ack = true;

	DEBUGFUNC("e1000_get_i2c_ack");

	e1000_raise_i2c_clk(hw, &i2cctl);

	/* Minimum high period of clock is 4us */
	usec_delay(E1000_I2C_T_HIGH);

	/* Wait until SCL returns high */
	for (i = 0; i < timeout; i++) {
		usec_delay(1);
		i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
		if (i2cctl & E1000_I2C_CLK_IN)
			break;
	}
	if (!(i2cctl & E1000_I2C_CLK_IN))
		return E1000_ERR_I2C;

	ack = e1000_get_i2c_data(&i2cctl);
	if (ack) {
		DEBUGOUT("I2C ack was not received.\n");
		status = E1000_ERR_I2C;
	}

	e1000_lower_i2c_clk(hw, &i2cctl);

	/* Minimum low period of clock is 4.7 us */
	usec_delay(E1000_I2C_T_LOW);

	return status;
}

/**
 *  e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
 *  @hw: pointer to hardware structure
 *  @data: read data value
 *
 *  Clocks in one bit via I2C data/clock
 **/
static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
{
	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);

	DEBUGFUNC("e1000_clock_in_i2c_bit");

	e1000_raise_i2c_clk(hw, &i2cctl);

	/* Minimum high period of clock is 4us */
	usec_delay(E1000_I2C_T_HIGH);

	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
	*data = e1000_get_i2c_data(&i2cctl);

	e1000_lower_i2c_clk(hw, &i2cctl);

	/* Minimum low period of clock is 4.7 us */
	usec_delay(E1000_I2C_T_LOW);

	return E1000_SUCCESS;
}

/**
 *  e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
 *  @hw: pointer to hardware structure
 *  @data: data value to write
 *
 *  Clocks out one bit via I2C data/clock
 **/
static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
{
	s32 status;
	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);

	DEBUGFUNC("e1000_clock_out_i2c_bit");

	status = e1000_set_i2c_data(hw, &i2cctl, data);
	if (status == E1000_SUCCESS) {
		e1000_raise_i2c_clk(hw, &i2cctl);

		/* Minimum high period of clock is 4us */
		usec_delay(E1000_I2C_T_HIGH);

		e1000_lower_i2c_clk(hw, &i2cctl);

		/* Minimum low period of clock is 4.7 us.
		 * This also takes care of the data hold time.
		 */
		usec_delay(E1000_I2C_T_LOW);
	} else {
		status = E1000_ERR_I2C;
		DEBUGOUT1("I2C data was not set to %X\n", data);
	}

	return status;
}
/**
 *  e1000_raise_i2c_clk - Raises the I2C SCL clock
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Raises the I2C clock line '0'->'1'
 **/
static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
{
	DEBUGFUNC("e1000_raise_i2c_clk");

	*i2cctl |= E1000_I2C_CLK_OUT;
	*i2cctl &= ~E1000_I2C_CLK_OE_N;
	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
	E1000_WRITE_FLUSH(hw);

	/* SCL rise time (1000ns) */
	usec_delay(E1000_I2C_T_RISE);
}

/**
 *  e1000_lower_i2c_clk - Lowers the I2C SCL clock
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Lowers the I2C clock line '1'->'0'
 **/
static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
{

	DEBUGFUNC("e1000_lower_i2c_clk");

	*i2cctl &= ~E1000_I2C_CLK_OUT;
	*i2cctl &= ~E1000_I2C_CLK_OE_N;
	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
	E1000_WRITE_FLUSH(hw);

	/* SCL fall time (300ns) */
	usec_delay(E1000_I2C_T_FALL);
}

/**
 *  e1000_set_i2c_data - Sets the I2C data bit
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *  @data: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
 **/
static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
{
	s32 status = E1000_SUCCESS;

	DEBUGFUNC("e1000_set_i2c_data");

	if (data)
		*i2cctl |= E1000_I2C_DATA_OUT;
	else
		*i2cctl &= ~E1000_I2C_DATA_OUT;

	*i2cctl &= ~E1000_I2C_DATA_OE_N;
	*i2cctl |= E1000_I2C_CLK_OE_N;
	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
	E1000_WRITE_FLUSH(hw);

	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
	usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);

	*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
	if (data != e1000_get_i2c_data(i2cctl)) {
		status = E1000_ERR_I2C;
		DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
	}

	return status;
}

/**
 *  e1000_get_i2c_data - Reads the I2C SDA data bit
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
 **/
static bool e1000_get_i2c_data(u32 *i2cctl)
{
	bool data;

	DEBUGFUNC("e1000_get_i2c_data");

	if (*i2cctl & E1000_I2C_DATA_IN)
		data = 1;
	else
		data = 0;

	return data;
}

/**
 *  e1000_i2c_bus_clear - Clears the I2C bus
 *  @hw: pointer to hardware structure
 *
 *  Clears the I2C bus by sending nine clock pulses.
 *  Used when data line is stuck low.
 **/
void e1000_i2c_bus_clear(struct e1000_hw *hw)
{
	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
	u32 i;

	DEBUGFUNC("e1000_i2c_bus_clear");

	e1000_i2c_start(hw);

	e1000_set_i2c_data(hw, &i2cctl, 1);

	for (i = 0; i < 9; i++) {
		e1000_raise_i2c_clk(hw, &i2cctl);

		/* Min high period of clock is 4us */
		usec_delay(E1000_I2C_T_HIGH);

		e1000_lower_i2c_clk(hw, &i2cctl);

		/* Min low period of clock is 4.7us*/
		usec_delay(E1000_I2C_T_LOW);
	}

	e1000_i2c_start(hw);

	/* Put the i2c bus back to default state */
	e1000_i2c_stop(hw);
}

static const u8 e1000_emc_temp_data[4] = {
	E1000_EMC_INTERNAL_DATA,
	E1000_EMC_DIODE1_DATA,
	E1000_EMC_DIODE2_DATA,
	E1000_EMC_DIODE3_DATA
};
static const u8 e1000_emc_therm_limit[4] = {
	E1000_EMC_INTERNAL_THERM_LIMIT,
	E1000_EMC_DIODE1_THERM_LIMIT,
	E1000_EMC_DIODE2_THERM_LIMIT,
	E1000_EMC_DIODE3_THERM_LIMIT
};

/**
 *  e1000_get_thermal_sensor_data_generic - Gathers thermal sensor data
 *  @hw: pointer to hardware structure
 *
 *  Updates the temperatures in mac.thermal_sensor_data
 **/
s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw)
{
	s32 status = E1000_SUCCESS;
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  sensor_index;
	u8  sensor_location;
	u8  i;
	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	DEBUGFUNC("e1000_get_thermal_sensor_data_generic");

	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
		return E1000_NOT_IMPLEMENTED;

	data->sensor[0].temp = (E1000_READ_REG(hw, E1000_THMJT) & 0xFF);

	/* Return the internal sensor only if ETS is unsupported */
	e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset);
	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
		return status;

	e1000_read_nvm(hw, ets_offset, 1, &ets_cfg);
	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
	    != NVM_ETS_TYPE_EMC)
		return E1000_NOT_IMPLEMENTED;

	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
	if (num_sensors > E1000_MAX_SENSORS)
		num_sensors = E1000_MAX_SENSORS;

	for (i = 1; i < num_sensors; i++) {
		e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor);
		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
				NVM_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
				   NVM_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0)
			hw->phy.ops.read_i2c_byte(hw,
					e1000_emc_temp_data[sensor_index],
					E1000_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
	}
	return status;
}

/**
 *  e1000_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
 *  @hw: pointer to hardware structure
 *
 *  Sets the thermal sensor thresholds according to the NVM map
 *  and save off the threshold and location values into mac.thermal_sensor_data
 **/
s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
{
	s32 status = E1000_SUCCESS;
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  sensor_index;
	u8  sensor_location;
	u8  therm_limit;
	u8  i;
	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	DEBUGFUNC("e1000_init_thermal_sensor_thresh_generic");

	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
		return E1000_NOT_IMPLEMENTED;

	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));

	data->sensor[0].location = 0x1;
	data->sensor[0].caution_thresh =
		(E1000_READ_REG(hw, E1000_THHIGHTC) & 0xFF);
	data->sensor[0].max_op_thresh =
		(E1000_READ_REG(hw, E1000_THLOWTC) & 0xFF);

	/* Return the internal sensor only if ETS is unsupported */
	e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset);
	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
		return status;

	e1000_read_nvm(hw, ets_offset, 1, &ets_cfg);
	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
	    != NVM_ETS_TYPE_EMC)
		return E1000_NOT_IMPLEMENTED;

	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
			    NVM_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);

	for (i = 1; i <= num_sensors; i++) {
		e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor);
		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
				NVM_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
				   NVM_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			e1000_emc_therm_limit[sensor_index],
			E1000_I2C_THERMAL_SENSOR_ADDR,
			therm_limit);

		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
			data->sensor[i].location = sensor_location;
			data->sensor[i].caution_thresh = therm_limit;
			data->sensor[i].max_op_thresh = therm_limit -
							low_thresh_delta;
		}
	}
	return status;
}