summaryrefslogtreecommitdiff
path: root/doc/guides/sample_app_ug/flow_filtering.rst
blob: 06230c07e530c5625d34726c936ac777ad70b017 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
..  BSD LICENSE
    Copyright(c) 2017 Mellanox Corporation. All rights reserved.
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in
    the documentation and/or other materials provided with the
    distribution.
    * Neither the name of Mellanox Corporation nor the names of its
    contributors may be used to endorse or promote products derived
    from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


Basic RTE Flow Filtering Sample Application
===========================================

The Basic RTE flow filtering sample application is a simple example of a
creating a RTE flow rule.

It is intended as a demonstration of the basic components RTE flow rules.


Compiling the Application
-------------------------

To compile the application export the path to the DPDK source tree and go to
the example directory:

.. code-block:: console

    export RTE_SDK=/path/to/rte_sdk

    cd ${RTE_SDK}/examples/flow_filtering

Set the target, for example:

.. code-block:: console

    export RTE_TARGET=x86_64-native-linuxapp-gcc

See the *DPDK Getting Started* Guide for possible ``RTE_TARGET`` values.

Build the application as follows:

.. code-block:: console

    make


Running the Application
-----------------------

To run the example in a ``linuxapp`` environment:

.. code-block:: console

    ./build/flow -l 1 -n 1

Refer to *DPDK Getting Started Guide* for general information on running
applications and the Environment Abstraction Layer (EAL) options.


Explanation
-----------

The example is build from 2 main files,
``main.c`` which holds the example logic and ``flow_blocks.c`` that holds the
implementation for building the flow rule.

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with ``rte_``
and are explained in detail in the *DPDK API Documentation*.


The Main Function
~~~~~~~~~~~~~~~~~

The ``main()`` function located in ``main.c`` file performs the initialization
and runs the main loop function.

The first task is to initialize the Environment Abstraction Layer (EAL).  The
``argc`` and ``argv`` arguments are provided to the ``rte_eal_init()``
function. The value returned is the number of parsed arguments:

.. code-block:: c

    int ret = rte_eal_init(argc, argv);
    if (ret < 0)
        rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");


The ``main()`` also allocates a mempool to hold the mbufs (Message Buffers)
used by the application:

.. code-block:: c

   mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", 4096, 128, 0,
                                            RTE_MBUF_DEFAULT_BUF_SIZE,
                                            rte_socket_id());

Mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.

The ``main()`` function also initializes all the ports using the user defined
``init_port()`` function which is explained in the next section:

.. code-block:: c

   init_port();

Once the initialization is complete, we set the flow rule using the
following code:

.. code-block:: c

   /* create flow for send packet with */
   flow = generate_ipv4_flow(port_id, selected_queue,
                                SRC_IP, EMPTY_MASK,
                                DEST_IP, FULL_MASK, &error);
   if (!flow) {
          printf("Flow can't be created %d message: %s\n",
                       error.type,
                       error.message ? error.message : "(no stated reason)");
          rte_exit(EXIT_FAILURE, "error in creating flow");
   }

In the last part the application is ready to launch the
``main_loop()`` function. Which is explained below.


.. code-block:: c

   main_loop();

The Port Initialization  Function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The main functional part of the port initialization used in the flow filtering
application is shown below:

.. code-block:: c

   init_port(void)
   {
           int ret;
           uint16_t i;
           struct rte_eth_conf port_conf = {
                   .rxmode = {
                           .split_hdr_size = 0,
                           .ignore_offload_bitfield = 1,
                           .offloads = DEV_RX_OFFLOAD_CRC_STRIP,
                           },
                   .txmode = {
                           .offloads =
                                   DEV_TX_OFFLOAD_VLAN_INSERT |
                                   DEV_TX_OFFLOAD_IPV4_CKSUM  |
                                   DEV_TX_OFFLOAD_UDP_CKSUM   |
                                   DEV_TX_OFFLOAD_TCP_CKSUM   |
                                   DEV_TX_OFFLOAD_SCTP_CKSUM  |
                                   DEV_TX_OFFLOAD_TCP_TSO,
                   },
           };
           struct rte_eth_txconf txq_conf;
           struct rte_eth_rxconf rxq_conf;
           struct rte_eth_dev_info dev_info;

           printf(":: initializing port: %d\n", port_id);
           ret = rte_eth_dev_configure(port_id,
                   nr_queues, nr_queues, &port_conf);
           if (ret < 0) {
                   rte_exit(EXIT_FAILURE,
                           ":: cannot configure device: err=%d, port=%u\n",
                           ret, port_id);
           }

           rte_eth_dev_info_get(port_id, &dev_info);
           rxq_conf = dev_info.default_rxconf;
           rxq_conf.offloads = port_conf.rxmode.offloads;
           /* only set Rx queues: something we care only so far */
           for (i = 0; i < nr_queues; i++) {
                   ret = rte_eth_rx_queue_setup(port_id, i, 512,
                           rte_eth_dev_socket_id(port_id),
                           &rxq_conf,
                           mbuf_pool);
                   if (ret < 0) {
                            rte_exit(EXIT_FAILURE,
                                    ":: Rx queue setup failed: err=%d, port=%u\n",
                                    ret, port_id);
                   }
           }

           txq_conf = dev_info.default_txconf;
           txq_conf.offloads = port_conf.txmode.offloads;

           for (i = 0; i < nr_queues; i++) {
                   ret = rte_eth_tx_queue_setup(port_id, i, 512,
                           rte_eth_dev_socket_id(port_id),
                           &txq_conf);
                   if (ret < 0) {
                           rte_exit(EXIT_FAILURE,
                                   ":: Tx queue setup failed: err=%d, port=%u\n",
                                   ret, port_id);
                   }
          }

           rte_eth_promiscuous_enable(port_id);
           ret = rte_eth_dev_start(port_id);
           if (ret < 0) {
                   rte_exit(EXIT_FAILURE,
                           "rte_eth_dev_start:err=%d, port=%u\n",
                           ret, port_id);
           }

           assert_link_status();

           printf(":: initializing port: %d done\n", port_id);
   }

The Ethernet port is configured with default settings using the
``rte_eth_dev_configure()`` function and the ``port_conf_default`` struct:

.. code-block:: c

   struct rte_eth_conf port_conf = {
           .rxmode = {
                   .split_hdr_size = 0,
                   .ignore_offload_bitfield = 1,
                   .offloads = DEV_RX_OFFLOAD_CRC_STRIP,
                   },
           .txmode = {
                   .offloads =
                           DEV_TX_OFFLOAD_VLAN_INSERT |
                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
                           DEV_TX_OFFLOAD_UDP_CKSUM   |
                           DEV_TX_OFFLOAD_TCP_CKSUM   |
                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
                           DEV_TX_OFFLOAD_TCP_TSO,
                   },
           };

   ret = rte_eth_dev_configure(port_id, nr_queues, nr_queues, &port_conf);
   if (ret < 0) {
        rte_exit(EXIT_FAILURE,
                 ":: cannot configure device: err=%d, port=%u\n",
                 ret, port_id);
   }
   rte_eth_dev_info_get(port_id, &dev_info);
   rxq_conf = dev_info.default_rxconf;
   rxq_conf.offloads = port_conf.rxmode.offloads;

For this example we are configuring number of rx and tx queues that are connected
to a single port.

.. code-block:: c

   for (i = 0; i < nr_queues; i++) {
          ret = rte_eth_rx_queue_setup(port_id, i, 512,
                                       rte_eth_dev_socket_id(port_id),
                                       &rxq_conf,
                                       mbuf_pool);
          if (ret < 0) {
                  rte_exit(EXIT_FAILURE,
                          ":: Rx queue setup failed: err=%d, port=%u\n",
                          ret, port_id);
          }
   }

   for (i = 0; i < nr_queues; i++) {
          ret = rte_eth_tx_queue_setup(port_id, i, 512,
                                       rte_eth_dev_socket_id(port_id),
                                       &txq_conf);
          if (ret < 0) {
                  rte_exit(EXIT_FAILURE,
                           ":: Tx queue setup failed: err=%d, port=%u\n",
                           ret, port_id);
          }
   }

In the next step we create and apply the flow rule. which is to send packets
with destination ip equals to 192.168.1.1 to queue number 1. The detail
explanation of the ``generate_ipv4_flow()`` appears later in this document:

.. code-block:: c

   flow = generate_ipv4_flow(port_id, selected_queue,
                             SRC_IP, EMPTY_MASK,
                             DEST_IP, FULL_MASK, &error);

We are setting the RX port to promiscuous mode:

.. code-block:: c

   rte_eth_promiscuous_enable(port_id);

The last step is to start the port.

.. code-block:: c

   ret = rte_eth_dev_start(port_id);
   if (ret < 0)  {
        rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err%d, port=%u\n",
                        ret, port_id);
   }


The main_loop function
~~~~~~~~~~~~~~~~~~~~~~

As we saw above the ``main()`` function calls an application function to handle
the main loop. For the flow filtering application the main_loop function
looks like the following:

.. code-block:: c

   static void
   main_loop(void)
   {
           struct rte_mbuf *mbufs[32];
           struct ether_hdr *eth_hdr;
           uint16_t nb_rx;
           uint16_t i;
           uint16_t j;

           while (!force_quit) {
                   for (i = 0; i < nr_queues; i++) {
                           nb_rx = rte_eth_rx_burst(port_id,
                                                   i, mbufs, 32);
                           if (nb_rx) {
                                   for (j = 0; j < nb_rx; j++) {
                                           struct rte_mbuf *m = mbufs[j];

                                           eth_hdr = rte_pktmbuf_mtod(m,
                                                        struct ether_hdr *);
                                           print_ether_addr("src=",
                                                        &eth_hdr->s_addr);
                                           print_ether_addr(" - dst=",
                                                        &eth_hdr->d_addr);
                                           printf(" - queue=0x%x",
                                                           (unsigned int)i);
                                           printf("\n");
                                           rte_pktmbuf_free(m);
                                   }
                           }
                   }
           }
           /* closing and releasing resources */
           rte_flow_flush(port_id, &error);
           rte_eth_dev_stop(port_id);
           rte_eth_dev_close(port_id);
   }

The main work of the application is reading the packets from all
queues and printing for each packet the destination queue:

.. code-block:: c

    while (!force_quit) {
        for (i = 0; i < nr_queues; i++) {
                   nb_rx = rte_eth_rx_burst(port_id, i, mbufs, 32);
                if (nb_rx) {
                        for (j = 0; j < nb_rx; j++) {
                             struct rte_mbuf *m = mbufs[j];
                             eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
                             print_ether_addr("src=", &eth_hdr->s_addr);
                             print_ether_addr(" - dst=", &eth_hdr->d_addr);
                             printf(" - queue=0x%x", (unsigned int)i);
                             printf("\n");
                             rte_pktmbuf_free(m);
                        }
                }
           }
    }


The forwarding loop can be interrupted and the application closed using
``Ctrl-C``. Which results in closing the port and the device using
``rte_eth_dev_stop`` and ``rte_eth_dev_close``

The generate_ipv4_flow function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The generate_ipv4_rule function is responsible for creating the flow rule.
This function is located in the ``flow_blocks.c`` file.

.. code-block:: c

   static struct rte_flow *
   generate_ipv4_flow(uint8_t port_id, uint16_t rx_q,
                   uint32_t src_ip, uint32_t src_mask,
                   uint32_t dest_ip, uint32_t dest_mask,
                   struct rte_flow_error *error)
   {
           struct rte_flow_attr attr;
           struct rte_flow_item pattern[MAX_PATTERN_NUM];
           struct rte_flow_action action[MAX_PATTERN_NUM];
           struct rte_flow *flow = NULL;
           struct rte_flow_action_queue queue = { .index = rx_q };
           struct rte_flow_item_eth eth_spec;
           struct rte_flow_item_eth eth_mask;
           struct rte_flow_item_vlan vlan_spec;
           struct rte_flow_item_vlan vlan_mask;
           struct rte_flow_item_ipv4 ip_spec;
           struct rte_flow_item_ipv4 ip_mask;

           memset(pattern, 0, sizeof(pattern));
           memset(action, 0, sizeof(action));

           /*
            * set the rule attribute.
            * in this case only ingress packets will be checked.
            */
           memset(&attr, 0, sizeof(struct rte_flow_attr));
           attr.ingress = 1;

           /*
            * create the action sequence.
            * one action only,  move packet to queue
            */

           action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
           action[0].conf = &queue;
           action[1].type = RTE_FLOW_ACTION_TYPE_END;

           /*
            * set the first level of the pattern (eth).
            * since in this example we just want to get the
            * ipv4 we set this level to allow all.
            */
           memset(&eth_spec, 0, sizeof(struct rte_flow_item_eth));
           memset(&eth_mask, 0, sizeof(struct rte_flow_item_eth));
           eth_spec.type = 0;
           eth_mask.type = 0;
           pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
           pattern[0].spec = &eth_spec;
           pattern[0].mask = &eth_mask;

           /*
            * setting the second level of the pattern (vlan).
            * since in this example we just want to get the
            * ipv4 we also set this level to allow all.
            */
           memset(&vlan_spec, 0, sizeof(struct rte_flow_item_vlan));
           memset(&vlan_mask, 0, sizeof(struct rte_flow_item_vlan));
           pattern[1].type = RTE_FLOW_ITEM_TYPE_VLAN;
           pattern[1].spec = &vlan_spec;
           pattern[1].mask = &vlan_mask;

           /*
            * setting the third level of the pattern (ip).
            * in this example this is the level we care about
            * so we set it according to the parameters.
            */
           memset(&ip_spec, 0, sizeof(struct rte_flow_item_ipv4));
           memset(&ip_mask, 0, sizeof(struct rte_flow_item_ipv4));
           ip_spec.hdr.dst_addr = htonl(dest_ip);
           ip_mask.hdr.dst_addr = dest_mask;
           ip_spec.hdr.src_addr = htonl(src_ip);
           ip_mask.hdr.src_addr = src_mask;
           pattern[2].type = RTE_FLOW_ITEM_TYPE_IPV4;
           pattern[2].spec = &ip_spec;
           pattern[2].mask = &ip_mask;

           /* the final level must be always type end */
           pattern[3].type = RTE_FLOW_ITEM_TYPE_END;

           int res = rte_flow_validate(port_id, &attr, pattern, action, error);
           if(!res)
               flow = rte_flow_create(port_id, &attr, pattern, action, error);

           return flow;
   }

The first part of the function is declaring the structures that will be used.

.. code-block:: c

   struct rte_flow_attr attr;
   struct rte_flow_item pattern[MAX_PATTERN_NUM];
   struct rte_flow_action action[MAX_PATTERN_NUM];
   struct rte_flow *flow;
   struct rte_flow_error error;
   struct rte_flow_action_queue queue = { .index = rx_q };
   struct rte_flow_item_eth eth_spec;
   struct rte_flow_item_eth eth_mask;
   struct rte_flow_item_vlan vlan_spec;
   struct rte_flow_item_vlan vlan_mask;
   struct rte_flow_item_ipv4 ip_spec;
   struct rte_flow_item_ipv4 ip_mask;

The following part create the flow attributes, in our case ingress.

.. code-block:: c

   memset(&attr, 0, sizeof(struct rte_flow_attr));
   attr.ingress = 1;

The third part defines the action to be taken when a packet matches
the rule. In this case send the packet to queue.

.. code-block:: c

   action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
   action[0].conf = &queue;
   action[1].type = RTE_FLOW_ACTION_TYPE_END;

The forth part is responsible for creating the pattern and is build from
number of step. In each step we build one level of the pattern starting with
the lowest one.

Setting the first level of the pattern ETH:

.. code-block:: c

   memset(&eth_spec, 0, sizeof(struct rte_flow_item_eth));
   memset(&eth_mask, 0, sizeof(struct rte_flow_item_eth));
   eth_spec.type = 0;
   eth_mask.type = 0;
   pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
   pattern[0].spec = &eth_spec;
   pattern[0].mask = &eth_mask;

Setting the second level of the pattern VLAN:

.. code-block:: c

   memset(&vlan_spec, 0, sizeof(struct rte_flow_item_vlan));
   memset(&vlan_mask, 0, sizeof(struct rte_flow_item_vlan));
   pattern[1].type = RTE_FLOW_ITEM_TYPE_VLAN;
   pattern[1].spec = &vlan_spec;
   pattern[1].mask = &vlan_mask;

Setting the third level ip:

.. code-block:: c

   memset(&ip_spec, 0, sizeof(struct rte_flow_item_ipv4));
   memset(&ip_mask, 0, sizeof(struct rte_flow_item_ipv4));
   ip_spec.hdr.dst_addr = htonl(dest_ip);
   ip_mask.hdr.dst_addr = dest_mask;
   ip_spec.hdr.src_addr = htonl(src_ip);
   ip_mask.hdr.src_addr = src_mask;
   pattern[2].type = RTE_FLOW_ITEM_TYPE_IPV4;
   pattern[2].spec = &ip_spec;
   pattern[2].mask = &ip_mask;

Closing the pattern part.

.. code-block:: c

   pattern[3].type = RTE_FLOW_ITEM_TYPE_END;

The last part of the function is to validate the rule and create it.

.. code-block:: c

   int res = rte_flow_validate(port_id, &attr, pattern, action, &error);
   if (!res)
        flow = rte_flow_create(port_id, &attr, pattern, action, &error);