summaryrefslogtreecommitdiff
path: root/lib/librte_pmd_igb/e1000_rxtx.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/librte_pmd_igb/e1000_rxtx.c')
-rw-r--r--lib/librte_pmd_igb/e1000_rxtx.c1859
1 files changed, 1859 insertions, 0 deletions
diff --git a/lib/librte_pmd_igb/e1000_rxtx.c b/lib/librte_pmd_igb/e1000_rxtx.c
new file mode 100644
index 0000000..a891d12
--- /dev/null
+++ b/lib/librte_pmd_igb/e1000_rxtx.c
@@ -0,0 +1,1859 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * version: DPDK.L.1.2.3-3
+ */
+
+#include <sys/queue.h>
+
+#include <endian.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_tailq.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "igb/e1000_api.h"
+#include "e1000_ethdev.h"
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+ struct rte_mbuf *m;
+
+ m = __rte_mbuf_raw_alloc(mp);
+ __rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
+ return (m);
+}
+
+#define RTE_MBUF_DATA_DMA_ADDR(mb) \
+ (uint64_t) ((mb)->buf_physaddr + \
+ (uint64_t) ((char *)((mb)->pkt.data) - \
+ (char *)(mb)->buf_addr))
+
+#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
+ (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct igb_rx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct igb_tx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+ uint16_t next_id; /**< Index of next descriptor in ring. */
+ uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct igb_rx_queue {
+ struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
+ volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
+ uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
+ volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
+ struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
+ struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+ struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
+ uint16_t nb_rx_desc; /**< number of RX descriptors. */
+ uint16_t rx_tail; /**< current value of RDT register. */
+ uint16_t nb_rx_hold; /**< number of held free RX desc. */
+ uint16_t rx_free_thresh; /**< max free RX desc to hold. */
+ uint16_t queue_id; /**< RX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
+};
+
+/**
+ * Hardware context number
+ */
+enum igb_advctx_num {
+ IGB_CTX_0 = 0, /**< CTX0 */
+ IGB_CTX_1 = 1, /**< CTX1 */
+ IGB_CTX_NUM = 2, /**< CTX NUM */
+};
+
+/**
+ * Strucutre to check if new context need be built
+ */
+struct igb_advctx_info {
+ uint16_t flags; /**< ol_flags related to context build. */
+ uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
+ uint32_t vlan_macip_lens; /**< vlan, mac.ip length. */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct igb_tx_queue {
+ volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
+ uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
+ struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
+ volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
+ uint32_t txd_type; /**< Device-specific TXD type */
+ uint16_t nb_tx_desc; /**< number of TX descriptors. */
+ uint16_t tx_tail; /**< Current value of TDT register. */
+ uint16_t tx_head; /**< Index of first used TX descriptor. */
+ uint16_t queue_id; /**< TX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint32_t ctx_curr; /**< Current used hardware descriptor. */
+ uint32_t ctx_start;/**< Start context position for transmit queue. */
+ struct igb_advctx_info ctx_cache[IGB_CTX_NUM]; /**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_igb_prefetch(p) rte_prefetch0(p)
+#else
+#define rte_igb_prefetch(p) do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p) do {} while(0)
+#endif
+
+/*********************************************************************
+ *
+ * TX function
+ *
+ **********************************************************************/
+
+/*
+ * Advanced context descriptor are almost same between igb/ixgbe
+ * This is a separate function, looking for optimization opportunity here
+ * Rework required to go with the pre-defined values.
+ */
+
+static inline void
+igbe_set_xmit_ctx(struct igb_tx_queue* txq,
+ volatile struct e1000_adv_tx_context_desc *ctx_txd,
+ uint16_t ol_flags, uint32_t vlan_macip_lens)
+{
+ uint32_t type_tucmd_mlhl;
+ uint32_t mss_l4len_idx;
+ uint32_t ctx_idx, ctx_curr;
+ uint32_t cmp_mask;
+
+ ctx_curr = txq->ctx_curr;
+ ctx_idx = ctx_curr + txq->ctx_start;
+
+ cmp_mask = 0;
+ type_tucmd_mlhl = 0;
+
+ if (ol_flags & PKT_TX_VLAN_PKT) {
+ cmp_mask |= TX_VLAN_CMP_MASK;
+ }
+
+ if (ol_flags & PKT_TX_IP_CKSUM) {
+ type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
+ cmp_mask |= TX_MAC_LEN_CMP_MASK;
+ }
+
+ /* Specify which HW CTX to upload. */
+ mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
+ switch (ol_flags & PKT_TX_L4_MASK) {
+ case PKT_TX_UDP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_TCP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_SCTP_CKSUM:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ default:
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
+ E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+ break;
+ }
+
+ txq->ctx_cache[ctx_curr].flags = ol_flags;
+ txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
+ txq->ctx_cache[ctx_curr].vlan_macip_lens = vlan_macip_lens & cmp_mask;
+
+ ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
+ ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
+ ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
+ ctx_txd->seqnum_seed = 0;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_advctx_update(struct igb_tx_queue *txq, uint16_t flags,
+ uint32_t vlan_macip_lens)
+{
+ /* If match with the current context */
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
+ (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+ return txq->ctx_curr;
+ }
+
+ /* If match with the second context */
+ txq->ctx_curr ^= 1;
+ if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+ (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens ==
+ (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+ return txq->ctx_curr;
+ }
+
+ /* Mismatch, use the previous context */
+ return (IGB_CTX_NUM);
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_olinfo(uint16_t ol_flags)
+{
+ static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
+ static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
+ uint32_t tmp;
+
+ tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+ tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+ return tmp;
+}
+
+static inline uint32_t
+tx_desc_vlan_flags_to_cmdtype(uint16_t ol_flags)
+{
+ static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
+ return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
+}
+
+uint16_t
+eth_igb_xmit_pkts(struct igb_tx_queue *txq, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct igb_tx_entry *sw_ring;
+ struct igb_tx_entry *txe, *txn;
+ volatile union e1000_adv_tx_desc *txr;
+ volatile union e1000_adv_tx_desc *txd;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ uint64_t buf_dma_addr;
+ uint32_t olinfo_status;
+ uint32_t cmd_type_len;
+ uint32_t pkt_len;
+ uint16_t slen;
+ uint16_t ol_flags;
+ uint16_t tx_end;
+ uint16_t tx_id;
+ uint16_t tx_last;
+ uint16_t nb_tx;
+ uint16_t tx_ol_req;
+ uint32_t new_ctx;
+ uint32_t ctx;
+ uint32_t vlan_macip_lens;
+
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ tx_pkt = *tx_pkts++;
+ pkt_len = tx_pkt->pkt.pkt_len;
+
+ RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+ /*
+ * The number of descriptors that must be allocated for a
+ * packet is the number of segments of that packet, plus 1
+ * Context Descriptor for the VLAN Tag Identifier, if any.
+ * Determine the last TX descriptor to allocate in the TX ring
+ * for the packet, starting from the current position (tx_id)
+ * in the ring.
+ */
+ tx_last = (uint16_t) (tx_id + tx_pkt->pkt.nb_segs - 1);
+
+ ol_flags = tx_pkt->ol_flags;
+ vlan_macip_lens = (tx_pkt->pkt.vlan_tci << 16) | (tx_pkt->pkt.l2_len << E1000_ADVTXD_MACLEN_SHIFT) | tx_pkt->pkt.l3_len;
+ tx_ol_req = (ol_flags & PKT_TX_OFFLOAD_MASK);
+
+ /* If a Context Descriptor need be built . */
+ if (tx_ol_req) {
+ ctx = what_advctx_update(txq, tx_ol_req,vlan_macip_lens);
+ /* Only allocate context descriptor if required*/
+ new_ctx = (ctx == IGB_CTX_NUM);
+ ctx = txq->ctx_curr;
+ tx_last = (uint16_t) (tx_last + new_ctx);
+ }
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+ " tx_first=%u tx_last=%u\n",
+ (unsigned) txq->port_id,
+ (unsigned) txq->queue_id,
+ (unsigned) pkt_len,
+ (unsigned) tx_id,
+ (unsigned) tx_last);
+
+ /*
+ * Check if there are enough free descriptors in the TX ring
+ * to transmit the next packet.
+ * This operation is based on the two following rules:
+ *
+ * 1- Only check that the last needed TX descriptor can be
+ * allocated (by construction, if that descriptor is free,
+ * all intermediate ones are also free).
+ *
+ * For this purpose, the index of the last TX descriptor
+ * used for a packet (the "last descriptor" of a packet)
+ * is recorded in the TX entries (the last one included)
+ * that are associated with all TX descriptors allocated
+ * for that packet.
+ *
+ * 2- Avoid to allocate the last free TX descriptor of the
+ * ring, in order to never set the TDT register with the
+ * same value stored in parallel by the NIC in the TDH
+ * register, which makes the TX engine of the NIC enter
+ * in a deadlock situation.
+ *
+ * By extension, avoid to allocate a free descriptor that
+ * belongs to the last set of free descriptors allocated
+ * to the same packet previously transmitted.
+ */
+
+ /*
+ * The "last descriptor" of the previously sent packet, if any,
+ * which used the last descriptor to allocate.
+ */
+ tx_end = sw_ring[tx_last].last_id;
+
+ /*
+ * The next descriptor following that "last descriptor" in the
+ * ring.
+ */
+ tx_end = sw_ring[tx_end].next_id;
+
+ /*
+ * The "last descriptor" associated with that next descriptor.
+ */
+ tx_end = sw_ring[tx_end].last_id;
+
+ /*
+ * Check that this descriptor is free.
+ */
+ if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
+ if (nb_tx == 0)
+ return (0);
+ goto end_of_tx;
+ }
+
+ /*
+ * Set common flags of all TX Data Descriptors.
+ *
+ * The following bits must be set in all Data Descriptors:
+ * - E1000_ADVTXD_DTYP_DATA
+ * - E1000_ADVTXD_DCMD_DEXT
+ *
+ * The following bits must be set in the first Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_ADVTXD_DCMD_IFCS
+ * - E1000_ADVTXD_MAC_1588
+ * - E1000_ADVTXD_DCMD_VLE
+ *
+ * The following bits must only be set in the last Data
+ * Descriptor:
+ * - E1000_TXD_CMD_EOP
+ *
+ * The following bits can be set in any Data Descriptor, but
+ * are only set in the last Data Descriptor:
+ * - E1000_TXD_CMD_RS
+ */
+ cmd_type_len = txq->txd_type |
+ E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+ olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (ol_flags & PKT_TX_IEEE1588_TMST)
+ cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
+#endif
+ if (tx_ol_req) {
+ /* Setup TX Advanced context descriptor if required */
+ if (new_ctx) {
+ volatile struct e1000_adv_tx_context_desc *
+ ctx_txd;
+
+ ctx_txd = (volatile struct
+ e1000_adv_tx_context_desc *)
+ &txr[tx_id];
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+ if (txe->mbuf != NULL) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+ vlan_macip_lens);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+
+ /* Setup the TX Advanced Data Descriptor */
+ cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
+ olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
+ olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
+ }
+
+ m_seg = tx_pkt;
+ do {
+ txn = &sw_ring[txe->next_id];
+ txd = &txr[tx_id];
+
+ if (txe->mbuf != NULL)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /*
+ * Set up transmit descriptor.
+ */
+ slen = (uint16_t) m_seg->pkt.data_len;
+ buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
+ txd->read.buffer_addr =
+ rte_cpu_to_le_64(buf_dma_addr);
+ txd->read.cmd_type_len =
+ rte_cpu_to_le_32(cmd_type_len | slen);
+ txd->read.olinfo_status =
+ rte_cpu_to_le_32(olinfo_status);
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->pkt.next;
+ } while (m_seg != NULL);
+
+ /*
+ * The last packet data descriptor needs End Of Packet (EOP)
+ * and Report Status (RS).
+ */
+ txd->read.cmd_type_len |=
+ rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+ }
+ end_of_tx:
+ rte_wmb();
+
+ /*
+ * Set the Transmit Descriptor Tail (TDT).
+ */
+ E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+ (unsigned) txq->port_id, (unsigned) txq->queue_id,
+ (unsigned) tx_id, (unsigned) nb_tx);
+ txq->tx_tail = tx_id;
+
+ return (nb_tx);
+}
+
+/*********************************************************************
+ *
+ * RX functions
+ *
+ **********************************************************************/
+static inline uint16_t
+rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
+{
+ uint16_t pkt_flags;
+
+ static uint16_t ip_pkt_types_map[16] = {
+ 0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
+ PKT_RX_IPV6_HDR, 0, 0, 0,
+ PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+ PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+ };
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ static uint32_t ip_pkt_etqf_map[8] = {
+ 0, 0, 0, PKT_RX_IEEE1588_PTP,
+ 0, 0, 0, 0,
+ };
+
+ pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
+ ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
+ ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#else
+ pkt_flags = (uint16_t) (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
+ ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#endif
+ return pkt_flags | (uint16_t) (((hl_tp_rs & 0x0F) == 0) ? 0 :
+ PKT_RX_RSS_HASH);
+}
+
+static inline uint16_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+ uint16_t pkt_flags;
+
+ /* Check if VLAN present */
+ pkt_flags = (uint16_t) (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0;
+
+#if defined(RTE_LIBRTE_IEEE1588)
+ if (rx_status & E1000_RXD_STAT_TMST)
+ pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
+#endif
+ return pkt_flags;
+}
+
+static inline uint16_t
+rx_desc_error_to_pkt_flags(uint32_t rx_status)
+{
+ /*
+ * Bit 30: IPE, IPv4 checksum error
+ * Bit 29: L4I, L4I integrity error
+ */
+
+ static uint16_t error_to_pkt_flags_map[4] = {
+ 0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
+ PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
+ };
+ return error_to_pkt_flags_map[(rx_status >>
+ E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
+}
+
+uint16_t
+eth_igb_recv_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma_addr;
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t pkt_len;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+ while (nb_rx < nb_pkts) {
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * End of packet.
+ *
+ * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+ * likely to be invalid and to be dropped by the various
+ * validation checks performed by the network stack.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy do not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x pkt_len=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u\n", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->read.hdr_addr = dma_addr;
+ rxdp->read.pkt_addr = dma_addr;
+
+ /*
+ * Initialize the returned mbuf.
+ * 1) setup generic mbuf fields:
+ * - number of segments,
+ * - next segment,
+ * - packet length,
+ * - RX port identifier.
+ * 2) integrate hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
+ rxq->crc_len);
+ rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
+ rte_packet_prefetch(rxm->pkt.data);
+ rxm->pkt.nb_segs = 1;
+ rxm->pkt.next = NULL;
+ rxm->pkt.pkt_len = pkt_len;
+ rxm->pkt.data_len = pkt_len;
+ rxm->pkt.in_port = rxq->port_id;
+
+ rxm->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+ /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+ rxm->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+ pkt_flags = (pkt_flags |
+ rx_desc_status_to_pkt_flags(staterr));
+ pkt_flags = (pkt_flags |
+ rx_desc_error_to_pkt_flags(staterr));
+ rxm->ol_flags = pkt_flags;
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+uint16_t
+eth_igb_recv_scattered_pkts(struct igb_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile union e1000_adv_rx_desc *rx_ring;
+ volatile union e1000_adv_rx_desc *rxdp;
+ struct igb_rx_entry *sw_ring;
+ struct igb_rx_entry *rxe;
+ struct rte_mbuf *first_seg;
+ struct rte_mbuf *last_seg;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ union e1000_adv_rx_desc rxd;
+ uint64_t dma; /* Physical address of mbuf data buffer */
+ uint32_t staterr;
+ uint32_t hlen_type_rss;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t data_len;
+ uint16_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+
+ /*
+ * Retrieve RX context of current packet, if any.
+ */
+ first_seg = rxq->pkt_first_seg;
+ last_seg = rxq->pkt_last_seg;
+
+ while (nb_rx < nb_pkts) {
+ next_desc:
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ staterr = rxdp->wb.upper.status_error;
+ if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * Descriptor done.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy does not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
+ "staterr=0x%x data_len=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) staterr,
+ (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u\n", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_igb_prefetch(&rx_ring[rx_id]);
+ rte_igb_prefetch(&sw_ring[rx_id]);
+ }
+
+ /*
+ * Update RX descriptor with the physical address of the new
+ * data buffer of the new allocated mbuf.
+ */
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+ rxdp->read.pkt_addr = dma;
+ rxdp->read.hdr_addr = dma;
+
+ /*
+ * Set data length & data buffer address of mbuf.
+ */
+ data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
+ rxm->pkt.data_len = data_len;
+ rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
+
+ /*
+ * If this is the first buffer of the received packet,
+ * set the pointer to the first mbuf of the packet and
+ * initialize its context.
+ * Otherwise, update the total length and the number of segments
+ * of the current scattered packet, and update the pointer to
+ * the last mbuf of the current packet.
+ */
+ if (first_seg == NULL) {
+ first_seg = rxm;
+ first_seg->pkt.pkt_len = data_len;
+ first_seg->pkt.nb_segs = 1;
+ } else {
+ first_seg->pkt.pkt_len += data_len;
+ first_seg->pkt.nb_segs++;
+ last_seg->pkt.next = rxm;
+ }
+
+ /*
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (! (staterr & E1000_RXD_STAT_EOP)) {
+ last_seg = rxm;
+ goto next_desc;
+ }
+
+ /*
+ * This is the last buffer of the received packet.
+ * If the CRC is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer.
+ * If part of the CRC is also contained in the previous
+ * mbuf, subtract the length of that CRC part from the
+ * data length of the previous mbuf.
+ */
+ rxm->pkt.next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
+ if (data_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->pkt.nb_segs--;
+ last_seg->pkt.data_len = (uint16_t)
+ (last_seg->pkt.data_len -
+ (ETHER_CRC_LEN - data_len));
+ last_seg->pkt.next = NULL;
+ } else
+ rxm->pkt.data_len =
+ (uint16_t) (data_len - ETHER_CRC_LEN);
+ }
+
+ /*
+ * Initialize the first mbuf of the returned packet:
+ * - RX port identifier,
+ * - hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ first_seg->pkt.in_port = rxq->port_id;
+ first_seg->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
+
+ /*
+ * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
+ * set in the pkt_flags field.
+ */
+ first_seg->pkt.vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+ hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+ pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+ pkt_flags = (pkt_flags | rx_desc_status_to_pkt_flags(staterr));
+ pkt_flags = (pkt_flags | rx_desc_error_to_pkt_flags(staterr));
+ first_seg->ol_flags = pkt_flags;
+
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_packet_prefetch(first_seg->pkt.data);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = first_seg;
+
+ /*
+ * Setup receipt context for a new packet.
+ */
+ first_seg = NULL;
+ }
+
+ /*
+ * Record index of the next RX descriptor to probe.
+ */
+ rxq->rx_tail = rx_id;
+
+ /*
+ * Save receive context.
+ */
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u\n",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return (nb_rx);
+}
+
+/*
+ * Rings setup and release.
+ *
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
+ * This will also optimize cache line size effect.
+ * H/W supports up to cache line size 128.
+ */
+#define IGB_ALIGN 128
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
+ * desscriptors should meet the following condition:
+ * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_RING_DESC 32
+#define IGB_MAX_RING_DESC 4096
+
+static const struct rte_memzone *
+ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
+ uint16_t queue_id, uint32_t ring_size, int socket_id)
+{
+ char z_name[RTE_MEMZONE_NAMESIZE];
+ const struct rte_memzone *mz;
+
+ rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
+ dev->driver->pci_drv.name, ring_name,
+ dev->data->port_id, queue_id);
+ mz = rte_memzone_lookup(z_name);
+ if (mz)
+ return mz;
+
+ return rte_memzone_reserve_aligned(z_name, (uint64_t)ring_size,
+ socket_id, 0, IGB_ALIGN);
+}
+
+static void
+igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
+{
+ unsigned i;
+
+ if (txq->sw_ring != NULL) {
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_tx_queue_release(struct igb_tx_queue *txq)
+{
+ igb_tx_queue_release_mbufs(txq);
+ rte_free(txq->sw_ring);
+ rte_free(txq);
+}
+
+int
+igb_dev_tx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
+{
+ uint16_t i, old_nb_queues = dev->data->nb_tx_queues;
+ struct igb_tx_queue **txq;
+
+ if (dev->data->tx_queues == NULL) {
+ dev->data->tx_queues = rte_zmalloc("ethdev->tx_queues",
+ sizeof(struct igb_tx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (dev->data->tx_queues == NULL) {
+ dev->data->nb_tx_queues = 0;
+ return -ENOMEM;
+ }
+ } else {
+ if (nb_queues < old_nb_queues)
+ for (i = nb_queues; i < old_nb_queues; i++)
+ igb_tx_queue_release(dev->data->tx_queues[i]);
+
+ if (nb_queues != old_nb_queues) {
+ txq = rte_realloc(dev->data->tx_queues,
+ sizeof(struct igb_tx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (txq == NULL)
+ return -ENOMEM;
+ else
+ dev->data->tx_queues = txq;
+ if (nb_queues > old_nb_queues)
+ memset(&(txq[old_nb_queues]), 0,
+ sizeof(struct igb_tx_queue *) *
+ (nb_queues - old_nb_queues));
+ }
+ }
+ dev->data->nb_tx_queues = nb_queues;
+
+ return 0;
+}
+
+static void
+igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
+{
+ txq->tx_head = 0;
+ txq->tx_tail = 0;
+ txq->ctx_curr = 0;
+ memset((void*)&txq->ctx_cache, 0,
+ IGB_CTX_NUM * sizeof(struct igb_advctx_info));
+}
+
+static void
+igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
+{
+ struct igb_tx_entry *txe = txq->sw_ring;
+ uint32_t size;
+ uint16_t i, prev;
+ struct e1000_hw *hw;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ size = sizeof(union e1000_adv_tx_desc) * txq->nb_tx_desc;
+ /* Zero out HW ring memory */
+ for (i = 0; i < size; i++) {
+ ((volatile char *)txq->tx_ring)[i] = 0;
+ }
+
+ /* Initialize ring entries */
+ prev = txq->nb_tx_desc - 1;
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
+
+ txd->wb.status = E1000_TXD_STAT_DD;
+ txe[i].mbuf = NULL;
+ txe[i].last_id = i;
+ txe[prev].next_id = i;
+ prev = i;
+ }
+
+ txq->txd_type = E1000_ADVTXD_DTYP_DATA;
+ /* 82575 specific, each tx queue will use 2 hw contexts */
+ if (hw->mac.type == e1000_82575)
+ txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
+
+ igb_reset_tx_queue_stat(txq);
+}
+
+int
+eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ const struct rte_memzone *tz;
+ struct igb_tx_queue *txq;
+ struct e1000_hw *hw;
+ uint32_t size;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of transmit descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of IGB_ALIGN.
+ */
+ if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
+ (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+ return -EINVAL;
+ }
+
+ /*
+ * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
+ * driver.
+ */
+ if (tx_conf->tx_free_thresh != 0)
+ RTE_LOG(WARNING, PMD,
+ "The tx_free_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_rs_thresh != 0)
+ RTE_LOG(WARNING, PMD,
+ "The tx_rs_thresh parameter is not "
+ "used for the 1G driver.");
+ if (tx_conf->tx_thresh.wthresh == 0)
+ RTE_LOG(WARNING, PMD,
+ "To improve 1G driver performance, consider setting "
+ "the TX WTHRESH value to 4, 8, or 16.");
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->tx_queues[queue_idx] != NULL)
+ igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
+
+ /* First allocate the tx queue data structure */
+ txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
+ CACHE_LINE_SIZE);
+ if (txq == NULL)
+ return (-ENOMEM);
+
+ /*
+ * Allocate TX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
+ tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
+ size, socket_id);
+ if (tz == NULL) {
+ igb_tx_queue_release(txq);
+ return (-ENOMEM);
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ txq->queue_id = queue_idx;
+ txq->port_id = dev->data->port_id;
+
+ txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
+ txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
+ txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
+
+ size = sizeof(union e1000_adv_tx_desc) * nb_desc;
+
+ /* Allocate software ring */
+ txq->sw_ring = rte_zmalloc("txq->sw_ring",
+ sizeof(struct igb_tx_entry) * nb_desc,
+ CACHE_LINE_SIZE);
+ if (txq->sw_ring == NULL) {
+ igb_tx_queue_release(txq);
+ return (-ENOMEM);
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
+ txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+ igb_reset_tx_queue(txq, dev);
+ dev->tx_pkt_burst = eth_igb_xmit_pkts;
+ dev->data->tx_queues[queue_idx] = txq;
+
+ return (0);
+}
+
+static void
+igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
+{
+ unsigned i;
+
+ if (rxq->sw_ring != NULL) {
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+igb_rx_queue_release(struct igb_rx_queue *rxq)
+{
+ igb_rx_queue_release_mbufs(rxq);
+ rte_free(rxq->sw_ring);
+ rte_free(rxq);
+}
+
+int
+igb_dev_rx_queue_alloc(struct rte_eth_dev *dev, uint16_t nb_queues)
+{
+ uint16_t i, old_nb_queues = dev->data->nb_rx_queues;
+ struct igb_rx_queue **rxq;
+
+ if (dev->data->rx_queues == NULL) {
+ dev->data->rx_queues = rte_zmalloc("ethdev->rx_queues",
+ sizeof(struct igb_rx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (dev->data->rx_queues == NULL) {
+ dev->data->nb_rx_queues = 0;
+ return -ENOMEM;
+ }
+ } else {
+ for (i = nb_queues; i < old_nb_queues; i++) {
+ igb_rx_queue_release(dev->data->rx_queues[i]);
+ dev->data->rx_queues[i] = NULL;
+ }
+ if (nb_queues != old_nb_queues) {
+ rxq = rte_realloc(dev->data->rx_queues,
+ sizeof(struct igb_rx_queue *) * nb_queues,
+ CACHE_LINE_SIZE);
+ if (rxq == NULL)
+ return -ENOMEM;
+ else
+ dev->data->rx_queues = rxq;
+ if (nb_queues > old_nb_queues)
+ memset(&(rxq[old_nb_queues]), 0,
+ sizeof(struct igb_rx_queue *) *
+ (nb_queues - old_nb_queues));
+ }
+ }
+ dev->data->nb_rx_queues = nb_queues;
+
+ return 0;
+}
+
+static void
+igb_reset_rx_queue(struct igb_rx_queue *rxq)
+{
+ unsigned size;
+ unsigned i;
+
+ /* Zero out HW ring memory */
+ size = sizeof(union e1000_adv_rx_desc) * rxq->nb_rx_desc;
+ for (i = 0; i < size; i++) {
+ ((volatile char *)rxq->rx_ring)[i] = 0;
+ }
+
+ rxq->rx_tail = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ const struct rte_memzone *rz;
+ struct igb_rx_queue *rxq;
+ struct e1000_hw *hw;
+ unsigned int size;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of receive descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of IGB_ALIGN.
+ */
+ if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
+ (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+ return (-EINVAL);
+ }
+
+ /* Free memory prior to re-allocation if needed */
+ if (dev->data->rx_queues[queue_idx] != NULL) {
+ igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* First allocate the RX queue data structure. */
+ rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
+ CACHE_LINE_SIZE);
+ if (rxq == NULL)
+ return (-ENOMEM);
+ rxq->mb_pool = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->pthresh = rx_conf->rx_thresh.pthresh;
+ rxq->hthresh = rx_conf->rx_thresh.hthresh;
+ rxq->wthresh = rx_conf->rx_thresh.wthresh;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+ rxq->port_id = dev->data->port_id;
+ rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
+ ETHER_CRC_LEN);
+
+ /*
+ * Allocate RX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
+ rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
+ if (rz == NULL) {
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
+ rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
+ rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
+
+ /* Allocate software ring. */
+ rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+ sizeof(struct igb_rx_entry) * nb_desc,
+ CACHE_LINE_SIZE);
+ if (rxq->sw_ring == NULL) {
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
+ rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+ dev->data->rx_queues[queue_idx] = rxq;
+ igb_reset_rx_queue(rxq);
+
+ return 0;
+}
+
+void
+igb_dev_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+ struct igb_tx_queue *txq;
+ struct igb_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ igb_tx_queue_release_mbufs(txq);
+ igb_reset_tx_queue(txq, dev);
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ igb_rx_queue_release_mbufs(rxq);
+ igb_reset_rx_queue(rxq);
+ }
+}
+
+/**
+ * Receive Side Scaling (RSS).
+ * See section 7.1.1.7 in the following document:
+ * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
+ *
+ * Principles:
+ * The source and destination IP addresses of the IP header and the source and
+ * destination ports of TCP/UDP headers, if any, of received packets are hashed
+ * against a configurable random key to compute a 32-bit RSS hash result.
+ * The seven (7) LSBs of the 32-bit hash result are used as an index into a
+ * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
+ * RSS output index which is used as the RX queue index where to store the
+ * received packets.
+ * The following output is supplied in the RX write-back descriptor:
+ * - 32-bit result of the Microsoft RSS hash function,
+ * - 4-bit RSS type field.
+ */
+
+/*
+ * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
+ * Used as the default key.
+ */
+static uint8_t rss_intel_key[40] = {
+ 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
+ 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
+ 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
+ 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
+ 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
+};
+
+static void
+igb_rss_disable(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ uint32_t mrqc;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ mrqc = E1000_READ_REG(hw, E1000_MRQC);
+ mrqc &= ~E1000_MRQC_ENABLE_MASK;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+static void
+igb_rss_configure(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ uint8_t *hash_key;
+ uint32_t rss_key;
+ uint32_t mrqc;
+ uint32_t shift;
+ uint16_t rss_hf;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
+ if (rss_hf == 0) /* Disable RSS. */ {
+ igb_rss_disable(dev);
+ return;
+ }
+ hash_key = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
+ if (hash_key == NULL)
+ hash_key = rss_intel_key; /* Default hash key. */
+
+ /* Fill in RSS hash key. */
+ for (i = 0; i < 10; i++) {
+ rss_key = hash_key[(i * 4)];
+ rss_key |= hash_key[(i * 4) + 1] << 8;
+ rss_key |= hash_key[(i * 4) + 2] << 16;
+ rss_key |= hash_key[(i * 4) + 3] << 24;
+ E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
+ }
+
+ /* Fill in redirection table. */
+ shift = (hw->mac.type == e1000_82575) ? 6 : 0;
+ for (i = 0; i < 128; i++) {
+ union e1000_reta {
+ uint32_t dword;
+ uint8_t bytes[4];
+ } reta;
+ uint8_t q_idx;
+
+ q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
+ i % dev->data->nb_rx_queues : 0);
+ reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
+ if ((i & 3) == 3)
+ E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
+ }
+
+ /* Set configured hashing functions in MRQC register. */
+ mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
+ if (rss_hf & ETH_RSS_IPV4)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
+ if (rss_hf & ETH_RSS_IPV4_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
+ if (rss_hf & ETH_RSS_IPV6)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
+ if (rss_hf & ETH_RSS_IPV6_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
+ if (rss_hf & ETH_RSS_IPV6_TCP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
+ if (rss_hf & ETH_RSS_IPV6_TCP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
+ if (rss_hf & ETH_RSS_IPV4_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
+ if (rss_hf & ETH_RSS_IPV6_UDP)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
+ if (rss_hf & ETH_RSS_IPV6_UDP_EX)
+ mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+
+static int
+igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
+{
+ struct igb_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ unsigned i;
+
+ /* Initialize software ring entries. */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile union e1000_adv_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+ if (mbuf == NULL) {
+ PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+ "queue_id=%hu\n", rxq->queue_id);
+ igb_rx_queue_release(rxq);
+ return (-ENOMEM);
+ }
+ dma_addr =
+ rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
+ rxd = &rxq->rx_ring[i];
+ rxd->read.hdr_addr = dma_addr;
+ rxd->read.pkt_addr = dma_addr;
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+int
+eth_igb_rx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_rx_queue *rxq;
+ struct rte_pktmbuf_pool_private *mbp_priv;
+ uint32_t rctl;
+ uint32_t rxcsum;
+ uint32_t srrctl;
+ uint16_t buf_size;
+ uint16_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ srrctl = 0;
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring.
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ /*
+ * Configure support of jumbo frames, if any.
+ */
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+ rctl |= E1000_RCTL_LPE;
+
+ /* Set maximum packet length. */
+ E1000_WRITE_REG(hw, E1000_RLPML,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len);
+ } else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Configure and enable each RX queue. */
+ rctl_bsize = 0;
+ dev->rx_pkt_burst = eth_igb_recv_pkts;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ /* Allocate buffers for descriptor rings and set up queue */
+ ret = igb_alloc_rx_queue_mbufs(rxq);
+ if (ret) {
+ igb_dev_clear_queues(dev);
+ return ret;
+ }
+
+ /*
+ * Reset crc_len in case it was changed after queue setup by a
+ * call to configure
+ */
+ rxq->crc_len =
+ (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+ 0 : ETHER_CRC_LEN);
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ rxq->nb_rx_desc *
+ sizeof(union e1000_adv_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+ srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ * Configure RX buffer size.
+ */
+ mbp_priv = (struct rte_pktmbuf_pool_private *)
+ ((char *)rxq->mb_pool + sizeof(struct rte_mempool));
+ buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
+ RTE_PKTMBUF_HEADROOM);
+ if (buf_size >= 1024) {
+ /*
+ * Configure the BSIZEPACKET field of the SRRCTL
+ * register of the queue.
+ * Value is in 1 KB resolution, from 1 KB to 127 KB.
+ * If this field is equal to 0b, then RCTL.BSIZE
+ * determines the RX packet buffer size.
+ */
+ srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+ E1000_SRRCTL_BSIZEPKT_MASK);
+ buf_size = (uint16_t) ((srrctl &
+ E1000_SRRCTL_BSIZEPKT_MASK) <<
+ E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+ if (dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size){
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ } else {
+ /*
+ * Use BSIZE field of the device RCTL register.
+ */
+ if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+ rctl_bsize = buf_size;
+ dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
+
+ /* Enable this RX queue. */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= (rxq->pthresh & 0x1F);
+ rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+ rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+ }
+
+ /*
+ * Setup BSIZE field of RCTL register, if needed.
+ * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
+ * register, since the code above configures the SRRCTL register of
+ * the RX queue in such a case.
+ * All configurable sizes are:
+ * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+ * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
+ * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
+ * 2048: rctl |= E1000_RCTL_SZ_2048;
+ * 1024: rctl |= E1000_RCTL_SZ_1024;
+ * 512: rctl |= E1000_RCTL_SZ_512;
+ * 256: rctl |= E1000_RCTL_SZ_256;
+ */
+ if (rctl_bsize > 0) {
+ if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
+ rctl |= E1000_RCTL_SZ_512;
+ else /* 256 <= buf_size < 512 - use 256 */
+ rctl |= E1000_RCTL_SZ_256;
+ }
+
+ /*
+ * Configure RSS if device configured with multiple RX queues.
+ */
+ if (dev->data->nb_rx_queues > 1)
+ igb_rss_configure(dev);
+ else
+ igb_rss_disable(dev);
+
+ /*
+ * Setup the Checksum Register.
+ * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ rxcsum |= E1000_RXCSUM_PCSD;
+
+ /* Enable both L3/L4 rx checksum offload */
+ if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+ rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ else
+ rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* Setup the Receive Control Register. */
+ if (dev->data->dev_conf.rxmode.hw_strip_crc) {
+ rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+
+ /* set STRCRC bit in all queues for Powerville */
+ if (hw->mac.type == e1000_i350) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
+ dvmolr |= E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
+ }
+ }
+
+ } else {
+ rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+ /* clear STRCRC bit in all queues for Powerville */
+ if (hw->mac.type == e1000_i350) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint32_t dvmolr = E1000_READ_REG(hw, E1000_DVMOLR(i));
+ dvmolr &= ~E1000_DVMOLR_STRCRC;
+ E1000_WRITE_REG(hw, E1000_DVMOLR(i), dvmolr);
+ }
+ }
+ }
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Make sure VLAN Filters are off. */
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets. */
+ rctl &= ~E1000_RCTL_SBP;
+
+ /* Enable Receives. */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers.
+ * This needs to be done after enable.
+ */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igb_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct igb_tx_queue *txq;
+ uint32_t tctl;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ txq->nb_tx_desc *
+ sizeof(union e1000_adv_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+ txdctl |= txq->pthresh & 0x1F;
+ txdctl |= ((txq->hthresh & 0x1F) << 8);
+ txdctl |= ((txq->wthresh & 0x1F) << 16);
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+ /* Program the Transmit Control Register. */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ e1000_config_collision_dist(hw);
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+