summaryrefslogtreecommitdiff
path: root/kernel/linux/kni/ethtool/igb/e1000_82575.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/linux/kni/ethtool/igb/e1000_82575.c')
-rw-r--r--kernel/linux/kni/ethtool/igb/e1000_82575.c3650
1 files changed, 0 insertions, 3650 deletions
diff --git a/kernel/linux/kni/ethtool/igb/e1000_82575.c b/kernel/linux/kni/ethtool/igb/e1000_82575.c
deleted file mode 100644
index 9834670..0000000
--- a/kernel/linux/kni/ethtool/igb/e1000_82575.c
+++ /dev/null
@@ -1,3650 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*******************************************************************************
-
- Intel(R) Gigabit Ethernet Linux driver
- Copyright(c) 2007-2013 Intel Corporation.
-
- Contact Information:
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/*
- * 82575EB Gigabit Network Connection
- * 82575EB Gigabit Backplane Connection
- * 82575GB Gigabit Network Connection
- * 82576 Gigabit Network Connection
- * 82576 Quad Port Gigabit Mezzanine Adapter
- * 82580 Gigabit Network Connection
- * I350 Gigabit Network Connection
- */
-
-#include "e1000_api.h"
-#include "e1000_i210.h"
-
-static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
-static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
-static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
-static void e1000_release_phy_82575(struct e1000_hw *hw);
-static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
-static void e1000_release_nvm_82575(struct e1000_hw *hw);
-static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
-static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw);
-static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
-static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-static s32 e1000_init_hw_82575(struct e1000_hw *hw);
-static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
-static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data);
-static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
-static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
-static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 *data);
-static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 data);
-static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
- bool active);
-static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
- bool active);
-static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
- bool active);
-static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
-static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
-static s32 e1000_get_media_type_82575(struct e1000_hw *hw);
-static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
-static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
-static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
- u32 offset, u16 data);
-static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
-static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
-static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
-static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
-static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
-static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
-static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
-static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
-static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
-static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
-static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
-static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
-static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
-static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
-static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
- u16 offset);
-static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
-static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
-static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
-static void e1000_clear_vfta_i350(struct e1000_hw *hw);
-
-static void e1000_i2c_start(struct e1000_hw *hw);
-static void e1000_i2c_stop(struct e1000_hw *hw);
-static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
-static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
-static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
-static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
-static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
-static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
-static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
-static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
-static bool e1000_get_i2c_data(u32 *i2cctl);
-
-static const u16 e1000_82580_rxpbs_table[] = {
- 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
-#define E1000_82580_RXPBS_TABLE_SIZE \
- (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
-
-
-/**
- * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
- * @hw: pointer to the HW structure
- *
- * Called to determine if the I2C pins are being used for I2C or as an
- * external MDIO interface since the two options are mutually exclusive.
- **/
-static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
-{
- u32 reg = 0;
- bool ext_mdio = false;
-
- DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
-
- switch (hw->mac.type) {
- case e1000_82575:
- case e1000_82576:
- reg = E1000_READ_REG(hw, E1000_MDIC);
- ext_mdio = !!(reg & E1000_MDIC_DEST);
- break;
- case e1000_82580:
- case e1000_i350:
- case e1000_i354:
- case e1000_i210:
- case e1000_i211:
- reg = E1000_READ_REG(hw, E1000_MDICNFG);
- ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
- break;
- default:
- break;
- }
- return ext_mdio;
-}
-
-/**
- * e1000_init_phy_params_82575 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl_ext;
-
- DEBUGFUNC("e1000_init_phy_params_82575");
-
- phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
- phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- goto out;
- }
-
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82575;
-
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
-
- phy->ops.acquire = e1000_acquire_phy_82575;
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
- phy->ops.release = e1000_release_phy_82575;
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-
- if (e1000_sgmii_active_82575(hw)) {
- phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
- ctrl_ext |= E1000_CTRL_I2C_ENA;
- } else {
- phy->ops.reset = e1000_phy_hw_reset_generic;
- ctrl_ext &= ~E1000_CTRL_I2C_ENA;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- e1000_reset_mdicnfg_82580(hw);
-
- if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
- phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
- phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
- } else {
- switch (hw->mac.type) {
- case e1000_82580:
- case e1000_i350:
- case e1000_i354:
- phy->ops.read_reg = e1000_read_phy_reg_82580;
- phy->ops.write_reg = e1000_write_phy_reg_82580;
- break;
- case e1000_i210:
- case e1000_i211:
- phy->ops.read_reg = e1000_read_phy_reg_gs40g;
- phy->ops.write_reg = e1000_write_phy_reg_gs40g;
- break;
- default:
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- }
- }
-
- /* Set phy->phy_addr and phy->id. */
- ret_val = e1000_get_phy_id_82575(hw);
-
- /* Verify phy id and set remaining function pointers */
- switch (phy->id) {
- case M88E1543_E_PHY_ID:
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- phy->type = e1000_phy_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- if (phy->id == I347AT4_E_PHY_ID ||
- phy->id == M88E1112_E_PHY_ID ||
- phy->id == M88E1340M_E_PHY_ID)
- phy->ops.get_cable_length =
- e1000_get_cable_length_m88_gen2;
- else if (phy->id == M88E1543_E_PHY_ID)
- phy->ops.get_cable_length =
- e1000_get_cable_length_m88_gen2;
- else
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- /* Check if this PHY is configured for media swap. */
- if (phy->id == M88E1112_E_PHY_ID) {
- u16 data;
-
- ret_val = phy->ops.write_reg(hw,
- E1000_M88E1112_PAGE_ADDR,
- 2);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw,
- E1000_M88E1112_MAC_CTRL_1,
- &data);
- if (ret_val)
- goto out;
-
- data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
- E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
- if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
- data == E1000_M88E1112_AUTO_COPPER_BASEX)
- hw->mac.ops.check_for_link =
- e1000_check_for_link_media_swap;
- }
- break;
- case IGP03E1000_E_PHY_ID:
- case IGP04E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
- break;
- case I82580_I_PHY_ID:
- case I350_I_PHY_ID:
- phy->type = e1000_phy_82580;
- phy->ops.check_polarity = e1000_check_polarity_82577;
- phy->ops.force_speed_duplex =
- e1000_phy_force_speed_duplex_82577;
- phy->ops.get_cable_length = e1000_get_cable_length_82577;
- phy->ops.get_info = e1000_get_phy_info_82577;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
- break;
- case I210_I_PHY_ID:
- phy->type = e1000_phy_i210;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82575 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- u16 size;
-
- DEBUGFUNC("e1000_init_nvm_params_82575");
-
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- /*
- * Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
-
- /* Just in case size is out of range, cap it to the largest
- * EEPROM size supported
- */
- if (size > 15)
- size = 15;
-
- nvm->word_size = 1 << size;
- if (hw->mac.type < e1000_i210) {
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
-
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
- 16 : 8;
- break;
- }
- if (nvm->word_size == (1 << 15))
- nvm->page_size = 128;
-
- nvm->type = e1000_nvm_eeprom_spi;
- } else {
- nvm->type = e1000_nvm_flash_hw;
- }
-
- /* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_82575;
- nvm->ops.release = e1000_release_nvm_82575;
- if (nvm->word_size < (1 << 15))
- nvm->ops.read = e1000_read_nvm_eerd;
- else
- nvm->ops.read = e1000_read_nvm_spi;
-
- nvm->ops.write = e1000_write_nvm_spi;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_82575;
-
- /* override generic family function pointers for specific descendants */
- switch (hw->mac.type) {
- case e1000_82580:
- nvm->ops.validate = e1000_validate_nvm_checksum_82580;
- nvm->ops.update = e1000_update_nvm_checksum_82580;
- break;
- case e1000_i350:
- //case e1000_i354:
- nvm->ops.validate = e1000_validate_nvm_checksum_i350;
- nvm->ops.update = e1000_update_nvm_checksum_i350;
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82575 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
-
- DEBUGFUNC("e1000_init_mac_params_82575");
-
- /* Derives media type */
- e1000_get_media_type_82575(hw);
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set uta register count */
- mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
- if (mac->type == e1000_82576)
- mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
- if (mac->type == e1000_82580)
- mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
- if (mac->type == e1000_i350 || mac->type == e1000_i354)
- mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
-
- /* Enable EEE default settings for EEE supported devices */
- if (mac->type >= e1000_i350)
- dev_spec->eee_disable = false;
-
- /* Allow a single clear of the SW semaphore on I210 and newer */
- if (mac->type >= e1000_i210)
- dev_spec->clear_semaphore_once = true;
-
- /* Set if part includes ASF firmware */
- mac->asf_firmware_present = true;
- /* FWSM register */
- mac->has_fwsm = true;
- /* ARC supported; valid only if manageability features are enabled. */
- mac->arc_subsystem_valid =
- !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
-
- /* Function pointers */
-
- /* bus type/speed/width */
- mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
- /* reset */
- if (mac->type >= e1000_82580)
- mac->ops.reset_hw = e1000_reset_hw_82580;
- else
- mac->ops.reset_hw = e1000_reset_hw_82575;
- /* hw initialization */
- mac->ops.init_hw = e1000_init_hw_82575;
- /* link setup */
- mac->ops.setup_link = e1000_setup_link_generic;
- /* physical interface link setup */
- mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
- /* physical interface shutdown */
- mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
- /* physical interface power up */
- mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
- /* check for link */
- mac->ops.check_for_link = e1000_check_for_link_82575;
- /* read mac address */
- mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
- /* configure collision distance */
- mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
- /* multicast address update */
- mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_i350;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_i350;
- } else {
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
- }
- if (hw->mac.type >= e1000_82580)
- mac->ops.validate_mdi_setting =
- e1000_validate_mdi_setting_crossover_generic;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_generic;
- /* blink LED */
- mac->ops.blink_led = e1000_blink_led_generic;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_generic;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_generic;
- mac->ops.led_off = e1000_led_off_generic;
- /* clear hardware counters */
- mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
- /* link info */
- mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
- /* get thermal sensor data */
- mac->ops.get_thermal_sensor_data =
- e1000_get_thermal_sensor_data_generic;
- mac->ops.init_thermal_sensor_thresh =
- e1000_init_thermal_sensor_thresh_generic;
- /* acquire SW_FW sync */
- mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
- mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
- if (mac->type >= e1000_i210) {
- mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
- mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
- }
-
- /* set lan id for port to determine which phy lock to use */
- hw->mac.ops.set_lan_id(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_function_pointers_82575 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_init_function_pointers_82575");
-
- hw->mac.ops.init_params = e1000_init_mac_params_82575;
- hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
- hw->phy.ops.init_params = e1000_init_phy_params_82575;
- hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
-}
-
-/**
- * e1000_acquire_phy_82575 - Acquire rights to access PHY
- * @hw: pointer to the HW structure
- *
- * Acquire access rights to the correct PHY.
- **/
-static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
-{
- u16 mask = E1000_SWFW_PHY0_SM;
-
- DEBUGFUNC("e1000_acquire_phy_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_SWFW_PHY1_SM;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_SWFW_PHY2_SM;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_SWFW_PHY3_SM;
-
- return hw->mac.ops.acquire_swfw_sync(hw, mask);
-}
-
-/**
- * e1000_release_phy_82575 - Release rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to release access rights to the correct PHY.
- **/
-static void e1000_release_phy_82575(struct e1000_hw *hw)
-{
- u16 mask = E1000_SWFW_PHY0_SM;
-
- DEBUGFUNC("e1000_release_phy_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_SWFW_PHY1_SM;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_SWFW_PHY2_SM;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_SWFW_PHY3_SM;
-
- hw->mac.ops.release_swfw_sync(hw, mask);
-}
-
-/**
- * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the serial gigabit media independent
- * interface and stores the retrieved information in data.
- **/
-static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- s32 ret_val = -E1000_ERR_PARAM;
-
- DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
-
- if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- DEBUGOUT1("PHY Address %u is out of range\n", offset);
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset using the serial gigabit
- * media independent interface.
- **/
-static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 data)
-{
- s32 ret_val = -E1000_ERR_PARAM;
-
- DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
-
- if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
- DEBUGOUT1("PHY Address %d is out of range\n", offset);
- goto out;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_id_82575 - Retrieve PHY addr and id
- * @hw: pointer to the HW structure
- *
- * Retrieves the PHY address and ID for both PHY's which do and do not use
- * sgmi interface.
- **/
-static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_id;
- u32 ctrl_ext;
- u32 mdic;
-
- DEBUGFUNC("e1000_get_phy_id_82575");
-
- /* i354 devices can have a PHY that needs an extra read for id */
- if (hw->mac.type == e1000_i354)
- e1000_get_phy_id(hw);
-
-
- /*
- * For SGMII PHYs, we try the list of possible addresses until
- * we find one that works. For non-SGMII PHYs
- * (e.g. integrated copper PHYs), an address of 1 should
- * work. The result of this function should mean phy->phy_addr
- * and phy->id are set correctly.
- */
- if (!e1000_sgmii_active_82575(hw)) {
- phy->addr = 1;
- ret_val = e1000_get_phy_id(hw);
- goto out;
- }
-
- if (e1000_sgmii_uses_mdio_82575(hw)) {
- switch (hw->mac.type) {
- case e1000_82575:
- case e1000_82576:
- mdic = E1000_READ_REG(hw, E1000_MDIC);
- mdic &= E1000_MDIC_PHY_MASK;
- phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
- break;
- case e1000_82580:
- case e1000_i350:
- case e1000_i354:
- case e1000_i210:
- case e1000_i211:
- mdic = E1000_READ_REG(hw, E1000_MDICNFG);
- mdic &= E1000_MDICNFG_PHY_MASK;
- phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- goto out;
- break;
- }
- ret_val = e1000_get_phy_id(hw);
- goto out;
- }
-
- /* Power on sgmii phy if it is disabled */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
- E1000_WRITE_FLUSH(hw);
- msec_delay(300);
-
- /*
- * The address field in the I2CCMD register is 3 bits and 0 is invalid.
- * Therefore, we need to test 1-7
- */
- for (phy->addr = 1; phy->addr < 8; phy->addr++) {
- ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
- if (ret_val == E1000_SUCCESS) {
- DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
- phy_id, phy->addr);
- /*
- * At the time of this writing, The M88 part is
- * the only supported SGMII PHY product.
- */
- if (phy_id == M88_VENDOR)
- break;
- } else {
- DEBUGOUT1("PHY address %u was unreadable\n",
- phy->addr);
- }
- }
-
- /* A valid PHY type couldn't be found. */
- if (phy->addr == 8) {
- phy->addr = 0;
- ret_val = -E1000_ERR_PHY;
- } else {
- ret_val = e1000_get_phy_id(hw);
- }
-
- /* restore previous sfp cage power state */
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
- * @hw: pointer to the HW structure
- *
- * Resets the PHY using the serial gigabit media independent interface.
- **/
-static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
-
- /*
- * This isn't a true "hard" reset, but is the only reset
- * available to us at this time.
- */
-
- DEBUGOUT("Soft resetting SGMII attached PHY...\n");
-
- if (!(hw->phy.ops.write_reg))
- goto out;
-
- /*
- * SFP documentation requires the following to configure the SPF module
- * to work on SGMII. No further documentation is given.
- */
- ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.commit(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82575");
-
- if (!(hw->phy.ops.read_reg))
- goto out;
-
- ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- goto out;
-
- if (active) {
- data |= IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- goto out;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else {
- data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- goto out;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- goto out;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 data;
-
- DEBUGFUNC("e1000_set_d0_lplu_state_82580");
-
- data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
- if (active) {
- data |= E1000_82580_PM_D0_LPLU;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- data &= ~E1000_82580_PM_SPD;
- } else {
- data &= ~E1000_82580_PM_D0_LPLU;
-
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on)
- data |= E1000_82580_PM_SPD;
- else if (phy->smart_speed == e1000_smart_speed_off)
- data &= ~E1000_82580_PM_SPD;
- }
-
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
- return ret_val;
-}
-
-/**
- * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u32 data;
-
- DEBUGFUNC("e1000_set_d3_lplu_state_82580");
-
- data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
- if (!active) {
- data &= ~E1000_82580_PM_D3_LPLU;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on)
- data |= E1000_82580_PM_SPD;
- else if (phy->smart_speed == e1000_smart_speed_off)
- data &= ~E1000_82580_PM_SPD;
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= E1000_82580_PM_D3_LPLU;
- /* When LPLU is enabled, we should disable SmartSpeed */
- data &= ~E1000_82580_PM_SPD;
- }
-
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
- return ret_val;
-}
-
-/**
- * e1000_acquire_nvm_82575 - Request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Acquire the necessary semaphores for exclusive access to the EEPROM.
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_acquire_nvm_82575");
-
- ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
- if (ret_val)
- goto out;
-
- /*
- * Check if there is some access
- * error this access may hook on
- */
- if (hw->mac.type == e1000_i350) {
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
- E1000_EECD_TIMEOUT)) {
- /* Clear all access error flags */
- E1000_WRITE_REG(hw, E1000_EECD, eecd |
- E1000_EECD_ERROR_CLR);
- DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
- }
- }
- if (hw->mac.type == e1000_82580) {
- u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- if (eecd & E1000_EECD_BLOCKED) {
- /* Clear access error flag */
- E1000_WRITE_REG(hw, E1000_EECD, eecd |
- E1000_EECD_BLOCKED);
- DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
- }
- }
-
-
- ret_val = e1000_acquire_nvm_generic(hw);
- if (ret_val)
- e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_82575 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit,
- * then release the semaphores acquired.
- **/
-static void e1000_release_nvm_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_release_nvm_82575");
-
- e1000_release_nvm_generic(hw);
-
- e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
-static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 ret_val = E1000_SUCCESS;
- s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
-
- DEBUGFUNC("e1000_acquire_swfw_sync_82575");
-
- while (i < timeout) {
- if (e1000_get_hw_semaphore_generic(hw)) {
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /*
- * Firmware currently using resource (fwmask)
- * or other software thread using resource (swmask)
- */
- e1000_put_hw_semaphore_generic(hw);
- msec_delay_irq(5);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- ret_val = -E1000_ERR_SWFW_SYNC;
- goto out;
- }
-
- swfw_sync |= swmask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
-static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
-
- DEBUGFUNC("e1000_release_swfw_sync_82575");
-
- while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
- ; /* Empty */
-
- swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
- swfw_sync &= ~mask;
- E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
- e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- * e1000_get_cfg_done_82575 - Read config done bit
- * @hw: pointer to the HW structure
- *
- * Read the management control register for the config done bit for
- * completion status. NOTE: silicon which is EEPROM-less will fail trying
- * to read the config done bit, so an error is *ONLY* logged and returns
- * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
- * would not be able to be reset or change link.
- **/
-static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
- s32 ret_val = E1000_SUCCESS;
- u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
- DEBUGFUNC("e1000_get_cfg_done_82575");
-
- if (hw->bus.func == E1000_FUNC_1)
- mask = E1000_NVM_CFG_DONE_PORT_1;
- else if (hw->bus.func == E1000_FUNC_2)
- mask = E1000_NVM_CFG_DONE_PORT_2;
- else if (hw->bus.func == E1000_FUNC_3)
- mask = E1000_NVM_CFG_DONE_PORT_3;
- while (timeout) {
- if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
- break;
- msec_delay(1);
- timeout--;
- }
- if (!timeout)
- DEBUGOUT("MNG configuration cycle has not completed.\n");
-
- /* If EEPROM is not marked present, init the PHY manually */
- if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
- (hw->phy.type == e1000_phy_igp_3))
- e1000_phy_init_script_igp3(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_get_link_up_info_82575 - Get link speed/duplex info
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * This is a wrapper function, if using the serial gigabit media independent
- * interface, use PCS to retrieve the link speed and duplex information.
- * Otherwise, use the generic function to get the link speed and duplex info.
- **/
-static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_get_link_up_info_82575");
-
- if (hw->phy.media_type != e1000_media_type_copper)
- ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
- duplex);
- else
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
- duplex);
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_link_82575 - Check for link
- * @hw: pointer to the HW structure
- *
- * If sgmii is enabled, then use the pcs register to determine link, otherwise
- * use the generic interface for determining link.
- **/
-static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 speed, duplex;
-
- DEBUGFUNC("e1000_check_for_link_82575");
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
- &duplex);
- /*
- * Use this flag to determine if link needs to be checked or
- * not. If we have link clear the flag so that we do not
- * continue to check for link.
- */
- hw->mac.get_link_status = !hw->mac.serdes_has_link;
-
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
- } else {
- ret_val = e1000_check_for_copper_link_generic(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_link_media_swap - Check which M88E1112 interface linked
- * @hw: pointer to the HW structure
- *
- * Poll the M88E1112 interfaces to see which interface achieved link.
- */
-static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- u8 port = 0;
-
- DEBUGFUNC("e1000_check_for_link_media_swap");
-
- /* Check the copper medium. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- if (data & E1000_M88E1112_STATUS_LINK)
- port = E1000_MEDIA_PORT_COPPER;
-
- /* Check the other medium. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
- if (ret_val)
- return ret_val;
-
- ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- if (data & E1000_M88E1112_STATUS_LINK)
- port = E1000_MEDIA_PORT_OTHER;
-
- /* Determine if a swap needs to happen. */
- if (port && (hw->dev_spec._82575.media_port != port)) {
- hw->dev_spec._82575.media_port = port;
- hw->dev_spec._82575.media_changed = true;
- } else {
- ret_val = e1000_check_for_link_82575(hw);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
- * @hw: pointer to the HW structure
- **/
-static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_power_up_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return;
-
- /* Enable PCS to turn on link */
- reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
- reg |= E1000_PCS_CFG_PCS_EN;
- E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
- /* Power up the laser */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* flush the write to verify completion */
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
-}
-
-/**
- * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Using the physical coding sub-layer (PCS), retrieve the current speed and
- * duplex, then store the values in the pointers provided.
- **/
-static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 pcs;
- u32 status;
-
- DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
-
- /*
- * Read the PCS Status register for link state. For non-copper mode,
- * the status register is not accurate. The PCS status register is
- * used instead.
- */
- pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
-
- /*
- * The link up bit determines when link is up on autoneg.
- */
- if (pcs & E1000_PCS_LSTS_LINK_OK) {
- mac->serdes_has_link = true;
-
- /* Detect and store PCS speed */
- if (pcs & E1000_PCS_LSTS_SPEED_1000)
- *speed = SPEED_1000;
- else if (pcs & E1000_PCS_LSTS_SPEED_100)
- *speed = SPEED_100;
- else
- *speed = SPEED_10;
-
- /* Detect and store PCS duplex */
- if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
- *duplex = FULL_DUPLEX;
- else
- *duplex = HALF_DUPLEX;
-
- /* Check if it is an I354 2.5Gb backplane connection. */
- if (mac->type == e1000_i354) {
- status = E1000_READ_REG(hw, E1000_STATUS);
- if ((status & E1000_STATUS_2P5_SKU) &&
- !(status & E1000_STATUS_2P5_SKU_OVER)) {
- *speed = SPEED_2500;
- *duplex = FULL_DUPLEX;
- DEBUGOUT("2500 Mbs, ");
- DEBUGOUT("Full Duplex\n");
- }
- }
-
- } else {
- mac->serdes_has_link = false;
- *speed = 0;
- *duplex = 0;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_shutdown_serdes_link_82575 - Remove link during power down
- * @hw: pointer to the HW structure
- *
- * In the case of serdes shut down sfp and PCS on driver unload
- * when management pass through is not enabled.
- **/
-void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 reg;
-
- DEBUGFUNC("e1000_shutdown_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return;
-
- if (!e1000_enable_mng_pass_thru(hw)) {
- /* Disable PCS to turn off link */
- reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
- reg &= ~E1000_PCS_CFG_PCS_EN;
- E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
- /* shutdown the laser */
- reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
- reg |= E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
- /* flush the write to verify completion */
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- }
-
- return;
-}
-
-/**
- * e1000_reset_hw_82575 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_reset_hw_82575");
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- /* set the completion timeout for interface */
- ret_val = e1000_set_pcie_completion_timeout(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Set completion timeout has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- DEBUGOUT("Issuing a global reset to MAC\n");
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- DEBUGOUT("Auto Read Done did not complete\n");
- }
-
- /* If EEPROM is not present, run manual init scripts */
- if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
- e1000_reset_init_script_82575(hw);
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_82575 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-static s32 e1000_init_hw_82575(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- u16 i, rar_count = mac->rar_entry_count;
-
- DEBUGFUNC("e1000_init_hw_82575");
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
- }
-
- /* Disabling VLAN filtering */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address */
- e1000_init_rx_addrs_generic(hw, rar_count);
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Zero out the Unicast HASH table */
- DEBUGOUT("Zeroing the UTA\n");
- for (i = 0; i < mac->uta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = mac->ops.setup_link(hw);
-
- /* Set the default MTU size */
- hw->dev_spec._82575.mtu = 1500;
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82575(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_setup_copper_link_82575 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Configures the link for auto-neg or forced speed and duplex. Then we check
- * for link, once link is established calls to configure collision distance
- * and flow control are called.
- **/
-static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u32 phpm_reg;
-
- DEBUGFUNC("e1000_setup_copper_link_82575");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Clear Go Link Disconnect bit on supported devices */
- switch (hw->mac.type) {
- case e1000_82580:
- case e1000_i350:
- case e1000_i210:
- case e1000_i211:
- phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
- phpm_reg &= ~E1000_82580_PM_GO_LINKD;
- E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
- break;
- default:
- break;
- }
-
- ret_val = e1000_setup_serdes_link_82575(hw);
- if (ret_val)
- goto out;
-
- if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
- /* allow time for SFP cage time to power up phy */
- msec_delay(300);
-
- ret_val = hw->phy.ops.reset(hw);
- if (ret_val) {
- DEBUGOUT("Error resetting the PHY.\n");
- goto out;
- }
- }
- switch (hw->phy.type) {
- case e1000_phy_i210:
- case e1000_phy_m88:
- switch (hw->phy.id) {
- case I347AT4_E_PHY_ID:
- case M88E1112_E_PHY_ID:
- case M88E1340M_E_PHY_ID:
- case M88E1543_E_PHY_ID:
- case I210_I_PHY_ID:
- ret_val = e1000_copper_link_setup_m88_gen2(hw);
- break;
- default:
- ret_val = e1000_copper_link_setup_m88(hw);
- break;
- }
- break;
- case e1000_phy_igp_3:
- ret_val = e1000_copper_link_setup_igp(hw);
- break;
- case e1000_phy_82580:
- ret_val = e1000_copper_link_setup_82577(hw);
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- goto out;
-
- ret_val = e1000_setup_copper_link_generic(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000_setup_serdes_link_82575 - Setup link for serdes
- * @hw: pointer to the HW structure
- *
- * Configure the physical coding sub-layer (PCS) link. The PCS link is
- * used on copper connections where the serialized gigabit media independent
- * interface (sgmii), or serdes fiber is being used. Configures the link
- * for auto-negotiation or forces speed/duplex.
- **/
-static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
-{
- u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
- bool pcs_autoneg;
- s32 ret_val = E1000_SUCCESS;
- u16 data;
-
- DEBUGFUNC("e1000_setup_serdes_link_82575");
-
- if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
- !e1000_sgmii_active_82575(hw))
- return ret_val;
-
- /*
- * On the 82575, SerDes loopback mode persists until it is
- * explicitly turned off or a power cycle is performed. A read to
- * the register does not indicate its status. Therefore, we ensure
- * loopback mode is disabled during initialization.
- */
- E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
-
- /* power on the sfp cage if present */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
- ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
- ctrl_reg |= E1000_CTRL_SLU;
-
- /* set both sw defined pins on 82575/82576*/
- if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
- ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
-
- reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
-
- /* default pcs_autoneg to the same setting as mac autoneg */
- pcs_autoneg = hw->mac.autoneg;
-
- switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- /* sgmii mode lets the phy handle forcing speed/duplex */
- pcs_autoneg = true;
- /* autoneg time out should be disabled for SGMII mode */
- reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
- break;
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- /* disable PCS autoneg and support parallel detect only */
- pcs_autoneg = false;
- /* fall through to default case */
- default:
- if (hw->mac.type == e1000_82575 ||
- hw->mac.type == e1000_82576) {
- ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
- pcs_autoneg = false;
- }
-
- /*
- * non-SGMII modes only supports a speed of 1000/Full for the
- * link so it is best to just force the MAC and let the pcs
- * link either autoneg or be forced to 1000/Full
- */
- ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
- E1000_CTRL_FD | E1000_CTRL_FRCDPX;
-
- /* set speed of 1000/Full if speed/duplex is forced */
- reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
-
- /*
- * New SerDes mode allows for forcing speed or autonegotiating speed
- * at 1gb. Autoneg should be default set by most drivers. This is the
- * mode that will be compatible with older link partners and switches.
- * However, both are supported by the hardware and some drivers/tools.
- */
- reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
- E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
-
- if (pcs_autoneg) {
- /* Set PCS register for autoneg */
- reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
- E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
-
- /* Disable force flow control for autoneg */
- reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
-
- /* Configure flow control advertisement for autoneg */
- anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
- anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
-
- switch (hw->fc.requested_mode) {
- case e1000_fc_full:
- case e1000_fc_rx_pause:
- anadv_reg |= E1000_TXCW_ASM_DIR;
- anadv_reg |= E1000_TXCW_PAUSE;
- break;
- case e1000_fc_tx_pause:
- anadv_reg |= E1000_TXCW_ASM_DIR;
- break;
- default:
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
-
- DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
- } else {
- /* Set PCS register for forced link */
- reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
-
- /* Force flow control for forced link */
- reg |= E1000_PCS_LCTL_FORCE_FCTRL;
-
- DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
- }
-
- E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
-
- if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
- e1000_force_mac_fc_generic(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_get_media_type_82575 - derives current media type.
- * @hw: pointer to the HW structure
- *
- * The media type is chosen reflecting few settings.
- * The following are taken into account:
- * - link mode set in the current port Init Control Word #3
- * - current link mode settings in CSR register
- * - MDIO vs. I2C PHY control interface chosen
- * - SFP module media type
- **/
-static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl_ext = 0;
- u32 link_mode = 0;
-
- /* Set internal phy as default */
- dev_spec->sgmii_active = false;
- dev_spec->module_plugged = false;
-
- /* Get CSR setting */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-
- /* extract link mode setting */
- link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
-
- switch (link_mode) {
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- case E1000_CTRL_EXT_LINK_MODE_GMII:
- hw->phy.media_type = e1000_media_type_copper;
- break;
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- /* Get phy control interface type set (MDIO vs. I2C)*/
- if (e1000_sgmii_uses_mdio_82575(hw)) {
- hw->phy.media_type = e1000_media_type_copper;
- dev_spec->sgmii_active = true;
- break;
- }
- /* fall through for I2C based SGMII */
- case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
- /* read media type from SFP EEPROM */
- ret_val = e1000_set_sfp_media_type_82575(hw);
- if ((ret_val != E1000_SUCCESS) ||
- (hw->phy.media_type == e1000_media_type_unknown)) {
- /*
- * If media type was not identified then return media
- * type defined by the CTRL_EXT settings.
- */
- hw->phy.media_type = e1000_media_type_internal_serdes;
-
- if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
- hw->phy.media_type = e1000_media_type_copper;
- dev_spec->sgmii_active = true;
- }
-
- break;
- }
-
- /* do not change link mode for 100BaseFX */
- if (dev_spec->eth_flags.e100_base_fx)
- break;
-
- /* change current link mode setting */
- ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
-
- if (hw->phy.media_type == e1000_media_type_copper)
- ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
- else
- ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
-
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_set_sfp_media_type_82575 - derives SFP module media type.
- * @hw: pointer to the HW structure
- *
- * The media type is chosen based on SFP module.
- * compatibility flags retrieved from SFP ID EEPROM.
- **/
-static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_ERR_CONFIG;
- u32 ctrl_ext = 0;
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
- u8 tranceiver_type = 0;
- s32 timeout = 3;
-
- /* Turn I2C interface ON and power on sfp cage */
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
-
- E1000_WRITE_FLUSH(hw);
-
- /* Read SFP module data */
- while (timeout) {
- ret_val = e1000_read_sfp_data_byte(hw,
- E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
- &tranceiver_type);
- if (ret_val == E1000_SUCCESS)
- break;
- msec_delay(100);
- timeout--;
- }
- if (ret_val != E1000_SUCCESS)
- goto out;
-
- ret_val = e1000_read_sfp_data_byte(hw,
- E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
- (u8 *)eth_flags);
- if (ret_val != E1000_SUCCESS)
- goto out;
-
- /* Check if there is some SFP module plugged and powered */
- if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
- (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
- dev_spec->module_plugged = true;
- if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
- hw->phy.media_type = e1000_media_type_internal_serdes;
- } else if (eth_flags->e100_base_fx) {
- dev_spec->sgmii_active = true;
- hw->phy.media_type = e1000_media_type_internal_serdes;
- } else if (eth_flags->e1000_base_t) {
- dev_spec->sgmii_active = true;
- hw->phy.media_type = e1000_media_type_copper;
- } else {
- hw->phy.media_type = e1000_media_type_unknown;
- DEBUGOUT("PHY module has not been recognized\n");
- goto out;
- }
- } else {
- hw->phy.media_type = e1000_media_type_unknown;
- }
- ret_val = E1000_SUCCESS;
-out:
- /* Restore I2C interface setting */
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- return ret_val;
-}
-
-/**
- * e1000_valid_led_default_82575 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_82575");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
- switch (hw->phy.media_type) {
- case e1000_media_type_internal_serdes:
- *data = ID_LED_DEFAULT_82575_SERDES;
- break;
- case e1000_media_type_copper:
- default:
- *data = ID_LED_DEFAULT;
- break;
- }
- }
-out:
- return ret_val;
-}
-
-/**
- * e1000_sgmii_active_82575 - Return sgmii state
- * @hw: pointer to the HW structure
- *
- * 82575 silicon has a serialized gigabit media independent interface (sgmii)
- * which can be enabled for use in the embedded applications. Simply
- * return the current state of the sgmii interface.
- **/
-static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- return dev_spec->sgmii_active;
-}
-
-/**
- * e1000_reset_init_script_82575 - Inits HW defaults after reset
- * @hw: pointer to the HW structure
- *
- * Inits recommended HW defaults after a reset when there is no EEPROM
- * detected. This is only for the 82575.
- **/
-static s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_reset_init_script_82575");
-
- if (hw->mac.type == e1000_82575) {
- DEBUGOUT("Running reset init script for 82575\n");
- /* SerDes configuration via SERDESCTRL */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
-
- /* CCM configuration via CCMCTL register */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
-
- /* PCIe lanes configuration */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
-
- /* PCIe PLL Configuration */
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
- e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mac_addr_82575 - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_read_mac_addr_82575");
-
- /*
- * If there's an alternate MAC address place it in RAR0
- * so that it will override the Si installed default perm
- * address.
- */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_mac_addr_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_collision_dist_82575 - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
-{
- u32 tctl_ext;
-
- DEBUGFUNC("e1000_config_collision_dist_82575");
-
- tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
-
- tctl_ext &= ~E1000_TCTL_EXT_COLD;
- tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
-
- if (!(phy->ops.check_reset_block))
- return;
-
- /* If the management interface is not enabled, then power down */
- if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-
- return;
-}
-
-/**
- * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_82575");
-
- e1000_clear_hw_cntrs_base_generic(hw);
-
- E1000_READ_REG(hw, E1000_PRC64);
- E1000_READ_REG(hw, E1000_PRC127);
- E1000_READ_REG(hw, E1000_PRC255);
- E1000_READ_REG(hw, E1000_PRC511);
- E1000_READ_REG(hw, E1000_PRC1023);
- E1000_READ_REG(hw, E1000_PRC1522);
- E1000_READ_REG(hw, E1000_PTC64);
- E1000_READ_REG(hw, E1000_PTC127);
- E1000_READ_REG(hw, E1000_PTC255);
- E1000_READ_REG(hw, E1000_PTC511);
- E1000_READ_REG(hw, E1000_PTC1023);
- E1000_READ_REG(hw, E1000_PTC1522);
-
- E1000_READ_REG(hw, E1000_ALGNERRC);
- E1000_READ_REG(hw, E1000_RXERRC);
- E1000_READ_REG(hw, E1000_TNCRS);
- E1000_READ_REG(hw, E1000_CEXTERR);
- E1000_READ_REG(hw, E1000_TSCTC);
- E1000_READ_REG(hw, E1000_TSCTFC);
-
- E1000_READ_REG(hw, E1000_MGTPRC);
- E1000_READ_REG(hw, E1000_MGTPDC);
- E1000_READ_REG(hw, E1000_MGTPTC);
-
- E1000_READ_REG(hw, E1000_IAC);
- E1000_READ_REG(hw, E1000_ICRXOC);
-
- E1000_READ_REG(hw, E1000_ICRXPTC);
- E1000_READ_REG(hw, E1000_ICRXATC);
- E1000_READ_REG(hw, E1000_ICTXPTC);
- E1000_READ_REG(hw, E1000_ICTXATC);
- E1000_READ_REG(hw, E1000_ICTXQEC);
- E1000_READ_REG(hw, E1000_ICTXQMTC);
- E1000_READ_REG(hw, E1000_ICRXDMTC);
-
- E1000_READ_REG(hw, E1000_CBTMPC);
- E1000_READ_REG(hw, E1000_HTDPMC);
- E1000_READ_REG(hw, E1000_CBRMPC);
- E1000_READ_REG(hw, E1000_RPTHC);
- E1000_READ_REG(hw, E1000_HGPTC);
- E1000_READ_REG(hw, E1000_HTCBDPC);
- E1000_READ_REG(hw, E1000_HGORCL);
- E1000_READ_REG(hw, E1000_HGORCH);
- E1000_READ_REG(hw, E1000_HGOTCL);
- E1000_READ_REG(hw, E1000_HGOTCH);
- E1000_READ_REG(hw, E1000_LENERRS);
-
- /* This register should not be read in copper configurations */
- if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
- e1000_sgmii_active_82575(hw))
- E1000_READ_REG(hw, E1000_SCVPC);
-}
-
-/**
- * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
- * @hw: pointer to the HW structure
- *
- * After rx enable if managability is enabled then there is likely some
- * bad data at the start of the fifo and possibly in the DMA fifo. This
- * function clears the fifos and flushes any packets that came in as rx was
- * being enabled.
- **/
-void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
-{
- u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
- int i, ms_wait;
-
- DEBUGFUNC("e1000_rx_fifo_workaround_82575");
- if (hw->mac.type != e1000_82575 ||
- !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
- return;
-
- /* Disable all Rx queues */
- for (i = 0; i < 4; i++) {
- rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
- E1000_WRITE_REG(hw, E1000_RXDCTL(i),
- rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
- }
- /* Poll all queues to verify they have shut down */
- for (ms_wait = 0; ms_wait < 10; ms_wait++) {
- msec_delay(1);
- rx_enabled = 0;
- for (i = 0; i < 4; i++)
- rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
- if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
- break;
- }
-
- if (ms_wait == 10)
- DEBUGOUT("Queue disable timed out after 10ms\n");
-
- /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
- * incoming packets are rejected. Set enable and wait 2ms so that
- * any packet that was coming in as RCTL.EN was set is flushed
- */
- rfctl = E1000_READ_REG(hw, E1000_RFCTL);
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
-
- rlpml = E1000_READ_REG(hw, E1000_RLPML);
- E1000_WRITE_REG(hw, E1000_RLPML, 0);
-
- rctl = E1000_READ_REG(hw, E1000_RCTL);
- temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
- temp_rctl |= E1000_RCTL_LPE;
-
- E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
- E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
- E1000_WRITE_FLUSH(hw);
- msec_delay(2);
-
- /* Enable Rx queues that were previously enabled and restore our
- * previous state
- */
- for (i = 0; i < 4; i++)
- E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl);
- E1000_WRITE_FLUSH(hw);
-
- E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
- E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
-
- /* Flush receive errors generated by workaround */
- E1000_READ_REG(hw, E1000_ROC);
- E1000_READ_REG(hw, E1000_RNBC);
- E1000_READ_REG(hw, E1000_MPC);
-}
-
-/**
- * e1000_set_pcie_completion_timeout - set pci-e completion timeout
- * @hw: pointer to the HW structure
- *
- * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
- * however the hardware default for these parts is 500us to 1ms which is less
- * than the 10ms recommended by the pci-e spec. To address this we need to
- * increase the value to either 10ms to 200ms for capability version 1 config,
- * or 16ms to 55ms for version 2.
- **/
-static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
-{
- u32 gcr = E1000_READ_REG(hw, E1000_GCR);
- s32 ret_val = E1000_SUCCESS;
- u16 pcie_devctl2;
-
- /* only take action if timeout value is defaulted to 0 */
- if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
- goto out;
-
- /*
- * if capababilities version is type 1 we can write the
- * timeout of 10ms to 200ms through the GCR register
- */
- if (!(gcr & E1000_GCR_CAP_VER2)) {
- gcr |= E1000_GCR_CMPL_TMOUT_10ms;
- goto out;
- }
-
- /*
- * for version 2 capabilities we need to write the config space
- * directly in order to set the completion timeout value for
- * 16ms to 55ms
- */
- ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
- if (ret_val)
- goto out;
-
- pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
-
- ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
-out:
- /* disable completion timeout resend */
- gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
-
- E1000_WRITE_REG(hw, E1000_GCR, gcr);
- return ret_val;
-}
-
-/**
- * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- * @pf: Physical Function pool - do not set anti-spoofing for the PF
- *
- * enables/disables L2 switch anti-spoofing functionality.
- **/
-void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
-{
- u32 reg_val, reg_offset;
-
- switch (hw->mac.type) {
- case e1000_82576:
- reg_offset = E1000_DTXSWC;
- break;
- case e1000_i350:
- case e1000_i354:
- reg_offset = E1000_TXSWC;
- break;
- default:
- return;
- }
-
- reg_val = E1000_READ_REG(hw, reg_offset);
- if (enable) {
- reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- /* The PF can spoof - it has to in order to
- * support emulation mode NICs
- */
- reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
- } else {
- reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
- E1000_DTXSWC_VLAN_SPOOF_MASK);
- }
- E1000_WRITE_REG(hw, reg_offset, reg_val);
-}
-
-/**
- * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- *
- * enables/disables L2 switch loopback functionality.
- **/
-void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
-{
- u32 dtxswc;
-
- switch (hw->mac.type) {
- case e1000_82576:
- dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
- if (enable)
- dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- else
- dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
- break;
- case e1000_i350:
- case e1000_i354:
- dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
- if (enable)
- dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- else
- dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
- E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
- break;
- default:
- /* Currently no other hardware supports loopback */
- break;
- }
-
-
-}
-
-/**
- * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
- * @hw: pointer to the hardware struct
- * @enable: state to enter, either enabled or disabled
- *
- * enables/disables replication of packets across multiple pools.
- **/
-void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
-{
- u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
-
- if (enable)
- vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
- else
- vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
-
- E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
-}
-
-/**
- * e1000_read_phy_reg_82580 - Read 82580 MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_read_phy_reg_82580");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_82580 - Write 82580 MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_write_phy_reg_82580");
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
-
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
- * @hw: pointer to the HW structure
- *
- * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
- * the values found in the EEPROM. This addresses an issue in which these
- * bits are not restored from EEPROM after reset.
- **/
-static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 mdicnfg;
- u16 nvm_data = 0;
-
- DEBUGFUNC("e1000_reset_mdicnfg_82580");
-
- if (hw->mac.type != e1000_82580)
- goto out;
- if (!e1000_sgmii_active_82575(hw))
- goto out;
-
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
- NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
- &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
- if (nvm_data & NVM_WORD24_EXT_MDIO)
- mdicnfg |= E1000_MDICNFG_EXT_MDIO;
- if (nvm_data & NVM_WORD24_COM_MDIO)
- mdicnfg |= E1000_MDICNFG_COM_MDIO;
- E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
-out:
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_82580 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets function or entire device (all ports, etc.)
- * to a known state.
- **/
-static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- /* BH SW mailbox bit in SW_FW_SYNC */
- u16 swmbsw_mask = E1000_SW_SYNCH_MB;
- u32 ctrl;
- bool global_device_reset = hw->dev_spec._82575.global_device_reset;
-
- DEBUGFUNC("e1000_reset_hw_82580");
-
- hw->dev_spec._82575.global_device_reset = false;
-
- /* 82580 does not reliably do global_device_reset due to hw errata */
- if (hw->mac.type == e1000_82580)
- global_device_reset = false;
-
- /* Get current control state. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val)
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- msec_delay(10);
-
- /* Determine whether or not a global dev reset is requested */
- if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
- swmbsw_mask))
- global_device_reset = false;
-
- if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STAT_DEV_RST_SET))
- ctrl |= E1000_CTRL_DEV_RST;
- else
- ctrl |= E1000_CTRL_RST;
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /* Add delay to insure DEV_RST has time to complete */
- if (global_device_reset)
- msec_delay(5);
-
- ret_val = e1000_get_auto_rd_done_generic(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- DEBUGOUT("Auto Read Done did not complete\n");
- }
-
- /* clear global device reset status bit */
- E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
-
- /* Clear any pending interrupt events. */
- E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- E1000_READ_REG(hw, E1000_ICR);
-
- ret_val = e1000_reset_mdicnfg_82580(hw);
- if (ret_val)
- DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
-
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
-
- /* Release semaphore */
- if (global_device_reset)
- hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
-
- return ret_val;
-}
-
-/**
- * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
- * @data: data received by reading RXPBS register
- *
- * The 82580 uses a table based approach for packet buffer allocation sizes.
- * This function converts the retrieved value into the correct table value
- * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
- * 0x0 36 72 144 1 2 4 8 16
- * 0x8 35 70 140 rsv rsv rsv rsv rsv
- */
-u16 e1000_rxpbs_adjust_82580(u32 data)
-{
- u16 ret_val = 0;
-
- if (data < E1000_82580_RXPBS_TABLE_SIZE)
- ret_val = e1000_82580_rxpbs_table[data];
-
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_with_offset - Validate EEPROM
- * checksum
- * @hw: pointer to the HW structure
- * @offset: offset in words of the checksum protected region
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
-
- for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
- checksum += nvm_data;
- }
-
- if (checksum != (u16) NVM_SUM) {
- DEBUGOUT("NVM Checksum Invalid\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_with_offset - Update EEPROM
- * checksum
- * @hw: pointer to the HW structure
- * @offset: offset in words of the checksum protected region
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
-
- for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
- ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum.\n");
- goto out;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
- &checksum);
- if (ret_val)
- DEBUGOUT("NVM Write Error while updating checksum.\n");
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM section checksum by reading/adding each word of
- * the EEPROM and then verifies that the sum of the EEPROM is
- * equal to 0xBABA.
- **/
-static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 eeprom_regions_count = 1;
- u16 j, nvm_data;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_82580");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
- /* if chekcsums compatibility bit is set validate checksums
- * for all 4 ports. */
- eeprom_regions_count = 4;
- }
-
- for (j = 0; j < eeprom_regions_count; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_82580 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM section checksums for all 4 ports by reading/adding
- * each word of the EEPROM up to the checksum. Then calculates the EEPROM
- * checksum and writes the value to the EEPROM.
- **/
-static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 j, nvm_data;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_update_nvm_checksum_82580");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
- goto out;
- }
-
- if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
- /* set compatibility bit to validate checksums appropriately */
- nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
- ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
- &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
- goto out;
- }
- }
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM section checksum by reading/adding each word of
- * the EEPROM and then verifies that the sum of the EEPROM is
- * equal to 0xBABA.
- **/
-static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 j;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_validate_nvm_checksum_i350");
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_validate_nvm_checksum_with_offset(hw,
- nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_i350 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM section checksums for all 4 ports by reading/adding
- * each word of the EEPROM up to the checksum. Then calculates the EEPROM
- * checksum and writes the value to the EEPROM.
- **/
-static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 j;
- u16 nvm_offset;
-
- DEBUGFUNC("e1000_update_nvm_checksum_i350");
-
- for (j = 0; j < 4; j++) {
- nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
- ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
- if (ret_val != E1000_SUCCESS)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * __e1000_access_emi_reg - Read/write EMI register
- * @hw: pointer to the HW structure
- * @addr: EMI address to program
- * @data: pointer to value to read/write from/to the EMI address
- * @read: boolean flag to indicate read or write
- **/
-static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
- u16 *data, bool read)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("__e1000_access_emi_reg");
-
- ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
- if (ret_val)
- return ret_val;
-
- if (read)
- ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
- else
- ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
-
- return ret_val;
-}
-
-/**
- * e1000_read_emi_reg - Read Extended Management Interface register
- * @hw: pointer to the HW structure
- * @addr: EMI address to program
- * @data: value to be read from the EMI address
- **/
-s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
-{
- DEBUGFUNC("e1000_read_emi_reg");
-
- return __e1000_access_emi_reg(hw, addr, data, true);
-}
-
-/**
- * e1000_set_eee_i350 - Enable/disable EEE support
- * @hw: pointer to the HW structure
- *
- * Enable/disable EEE based on setting in dev_spec structure.
- *
- **/
-s32 e1000_set_eee_i350(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 ipcnfg, eeer;
-
- DEBUGFUNC("e1000_set_eee_i350");
-
- if ((hw->mac.type < e1000_i350) ||
- (hw->phy.media_type != e1000_media_type_copper))
- goto out;
- ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
- eeer = E1000_READ_REG(hw, E1000_EEER);
-
- /* enable or disable per user setting */
- if (!(hw->dev_spec._82575.eee_disable)) {
- u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
-
- ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
- eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
-
- /* This bit should not be set in normal operation. */
- if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
- DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
- } else {
- ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
- eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
- E1000_EEER_LPI_FC);
- }
- E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
- E1000_WRITE_REG(hw, E1000_EEER, eeer);
- E1000_READ_REG(hw, E1000_IPCNFG);
- E1000_READ_REG(hw, E1000_EEER);
-out:
-
- return ret_val;
-}
-
-/**
- * e1000_set_eee_i354 - Enable/disable EEE support
- * @hw: pointer to the HW structure
- *
- * Enable/disable EEE legacy mode based on setting in dev_spec structure.
- *
- **/
-s32 e1000_set_eee_i354(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_data;
-
- DEBUGFUNC("e1000_set_eee_i354");
-
- if ((hw->phy.media_type != e1000_media_type_copper) ||
- ((phy->id != M88E1543_E_PHY_ID)))
- goto out;
-
- if (!hw->dev_spec._82575.eee_disable) {
- /* Switch to PHY page 18. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
- if (ret_val)
- goto out;
-
- ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
- phy_data);
- if (ret_val)
- goto out;
-
- /* Return the PHY to page 0. */
- ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
- if (ret_val)
- goto out;
-
- /* Turn on EEE advertisement. */
- ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= E1000_EEE_ADV_100_SUPPORTED |
- E1000_EEE_ADV_1000_SUPPORTED;
- ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- phy_data);
- } else {
- /* Turn off EEE advertisement. */
- ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
- E1000_EEE_ADV_1000_SUPPORTED);
- ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
- E1000_EEE_ADV_DEV_I354,
- phy_data);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_eee_status_i354 - Get EEE status
- * @hw: pointer to the HW structure
- * @status: EEE status
- *
- * Get EEE status by guessing based on whether Tx or Rx LPI indications have
- * been received.
- **/
-s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
- u16 phy_data;
-
- DEBUGFUNC("e1000_get_eee_status_i354");
-
- /* Check if EEE is supported on this device. */
- if ((hw->phy.media_type != e1000_media_type_copper) ||
- ((phy->id != M88E1543_E_PHY_ID)))
- goto out;
-
- ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
- E1000_PCS_STATUS_DEV_I354,
- &phy_data);
- if (ret_val)
- goto out;
-
- *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
- E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
-
-out:
- return ret_val;
-}
-
-/* Due to a hw errata, if the host tries to configure the VFTA register
- * while performing queries from the BMC or DMA, then the VFTA in some
- * cases won't be written.
- */
-
-/**
- * e1000_clear_vfta_i350 - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-void e1000_clear_vfta_i350(struct e1000_hw *hw)
-{
- u32 offset;
- int i;
-
- DEBUGFUNC("e1000_clear_vfta_350");
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- for (i = 0; i < 10; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
-
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/**
- * e1000_write_vfta_i350 - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
-void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
-{
- int i;
-
- DEBUGFUNC("e1000_write_vfta_350");
-
- for (i = 0; i < 10; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
-
- E1000_WRITE_FLUSH(hw);
-}
-
-
-/**
- * e1000_set_i2c_bb - Enable I2C bit-bang
- * @hw: pointer to the HW structure
- *
- * Enable I2C bit-bang interface
- *
- **/
-s32 e1000_set_i2c_bb(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u32 ctrl_ext, i2cparams;
-
- DEBUGFUNC("e1000_set_i2c_bb");
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- ctrl_ext |= E1000_CTRL_I2C_ENA;
- E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
-
- i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
- i2cparams |= E1000_I2CBB_EN;
- i2cparams |= E1000_I2C_DATA_OE_N;
- i2cparams |= E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
- E1000_WRITE_FLUSH(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
- * @hw: pointer to hardware structure
- * @byte_offset: byte offset to read
- * @dev_addr: device address
- * @data: value read
- *
- * Performs byte read operation over I2C interface at
- * a specified device address.
- **/
-s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 *data)
-{
- s32 status = E1000_SUCCESS;
- u32 max_retry = 10;
- u32 retry = 1;
- u16 swfw_mask = 0;
-
- bool nack = true;
-
- DEBUGFUNC("e1000_read_i2c_byte_generic");
-
- swfw_mask = E1000_SWFW_PHY0_SM;
-
- do {
- if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
- != E1000_SUCCESS) {
- status = E1000_ERR_SWFW_SYNC;
- goto read_byte_out;
- }
-
- e1000_i2c_start(hw);
-
- /* Device Address and write indication */
- status = e1000_clock_out_i2c_byte(hw, dev_addr);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_byte(hw, byte_offset);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- e1000_i2c_start(hw);
-
- /* Device Address and read indication */
- status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_in_i2c_byte(hw, data);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_bit(hw, nack);
- if (status != E1000_SUCCESS)
- goto fail;
-
- e1000_i2c_stop(hw);
- break;
-
-fail:
- hw->mac.ops.release_swfw_sync(hw, swfw_mask);
- msec_delay(100);
- e1000_i2c_bus_clear(hw);
- retry++;
- if (retry < max_retry)
- DEBUGOUT("I2C byte read error - Retrying.\n");
- else
- DEBUGOUT("I2C byte read error.\n");
-
- } while (retry < max_retry);
-
- hw->mac.ops.release_swfw_sync(hw, swfw_mask);
-
-read_byte_out:
-
- return status;
-}
-
-/**
- * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
- * @hw: pointer to hardware structure
- * @byte_offset: byte offset to write
- * @dev_addr: device address
- * @data: value to write
- *
- * Performs byte write operation over I2C interface at
- * a specified device address.
- **/
-s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
- u8 dev_addr, u8 data)
-{
- s32 status = E1000_SUCCESS;
- u32 max_retry = 1;
- u32 retry = 0;
- u16 swfw_mask = 0;
-
- DEBUGFUNC("e1000_write_i2c_byte_generic");
-
- swfw_mask = E1000_SWFW_PHY0_SM;
-
- if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
- status = E1000_ERR_SWFW_SYNC;
- goto write_byte_out;
- }
-
- do {
- e1000_i2c_start(hw);
-
- status = e1000_clock_out_i2c_byte(hw, dev_addr);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_byte(hw, byte_offset);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_clock_out_i2c_byte(hw, data);
- if (status != E1000_SUCCESS)
- goto fail;
-
- status = e1000_get_i2c_ack(hw);
- if (status != E1000_SUCCESS)
- goto fail;
-
- e1000_i2c_stop(hw);
- break;
-
-fail:
- e1000_i2c_bus_clear(hw);
- retry++;
- if (retry < max_retry)
- DEBUGOUT("I2C byte write error - Retrying.\n");
- else
- DEBUGOUT("I2C byte write error.\n");
- } while (retry < max_retry);
-
- hw->mac.ops.release_swfw_sync(hw, swfw_mask);
-
-write_byte_out:
-
- return status;
-}
-
-/**
- * e1000_i2c_start - Sets I2C start condition
- * @hw: pointer to hardware structure
- *
- * Sets I2C start condition (High -> Low on SDA while SCL is High)
- **/
-static void e1000_i2c_start(struct e1000_hw *hw)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_i2c_start");
-
- /* Start condition must begin with data and clock high */
- e1000_set_i2c_data(hw, &i2cctl, 1);
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Setup time for start condition (4.7us) */
- usec_delay(E1000_I2C_T_SU_STA);
-
- e1000_set_i2c_data(hw, &i2cctl, 0);
-
- /* Hold time for start condition (4us) */
- usec_delay(E1000_I2C_T_HD_STA);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us */
- usec_delay(E1000_I2C_T_LOW);
-
-}
-
-/**
- * e1000_i2c_stop - Sets I2C stop condition
- * @hw: pointer to hardware structure
- *
- * Sets I2C stop condition (Low -> High on SDA while SCL is High)
- **/
-static void e1000_i2c_stop(struct e1000_hw *hw)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_i2c_stop");
-
- /* Stop condition must begin with data low and clock high */
- e1000_set_i2c_data(hw, &i2cctl, 0);
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Setup time for stop condition (4us) */
- usec_delay(E1000_I2C_T_SU_STO);
-
- e1000_set_i2c_data(hw, &i2cctl, 1);
-
- /* bus free time between stop and start (4.7us)*/
- usec_delay(E1000_I2C_T_BUF);
-}
-
-/**
- * e1000_clock_in_i2c_byte - Clocks in one byte via I2C
- * @hw: pointer to hardware structure
- * @data: data byte to clock in
- *
- * Clocks in one byte data via I2C data/clock
- **/
-static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
-{
- s32 i;
- bool bit = 0;
-
- DEBUGFUNC("e1000_clock_in_i2c_byte");
-
- *data = 0;
- for (i = 7; i >= 0; i--) {
- e1000_clock_in_i2c_bit(hw, &bit);
- *data |= bit << i;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clock_out_i2c_byte - Clocks out one byte via I2C
- * @hw: pointer to hardware structure
- * @data: data byte clocked out
- *
- * Clocks out one byte data via I2C data/clock
- **/
-static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
-{
- s32 status = E1000_SUCCESS;
- s32 i;
- u32 i2cctl;
- bool bit = 0;
-
- DEBUGFUNC("e1000_clock_out_i2c_byte");
-
- for (i = 7; i >= 0; i--) {
- bit = (data >> i) & 0x1;
- status = e1000_clock_out_i2c_bit(hw, bit);
-
- if (status != E1000_SUCCESS)
- break;
- }
-
- /* Release SDA line (set high) */
- i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- i2cctl |= E1000_I2C_DATA_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- return status;
-}
-
-/**
- * e1000_get_i2c_ack - Polls for I2C ACK
- * @hw: pointer to hardware structure
- *
- * Clocks in/out one bit via I2C data/clock
- **/
-static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
-{
- s32 status = E1000_SUCCESS;
- u32 i = 0;
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- u32 timeout = 10;
- bool ack = true;
-
- DEBUGFUNC("e1000_get_i2c_ack");
-
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Minimum high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- /* Wait until SCL returns high */
- for (i = 0; i < timeout; i++) {
- usec_delay(1);
- i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- if (i2cctl & E1000_I2C_CLK_IN)
- break;
- }
- if (!(i2cctl & E1000_I2C_CLK_IN))
- return E1000_ERR_I2C;
-
- ack = e1000_get_i2c_data(&i2cctl);
- if (ack) {
- DEBUGOUT("I2C ack was not received.\n");
- status = E1000_ERR_I2C;
- }
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us */
- usec_delay(E1000_I2C_T_LOW);
-
- return status;
-}
-
-/**
- * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
- * @hw: pointer to hardware structure
- * @data: read data value
- *
- * Clocks in one bit via I2C data/clock
- **/
-static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_clock_in_i2c_bit");
-
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Minimum high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- *data = e1000_get_i2c_data(&i2cctl);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us */
- usec_delay(E1000_I2C_T_LOW);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
- * @hw: pointer to hardware structure
- * @data: data value to write
- *
- * Clocks out one bit via I2C data/clock
- **/
-static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
-{
- s32 status;
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
- DEBUGFUNC("e1000_clock_out_i2c_bit");
-
- status = e1000_set_i2c_data(hw, &i2cctl, data);
- if (status == E1000_SUCCESS) {
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Minimum high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Minimum low period of clock is 4.7 us.
- * This also takes care of the data hold time.
- */
- usec_delay(E1000_I2C_T_LOW);
- } else {
- status = E1000_ERR_I2C;
- DEBUGOUT1("I2C data was not set to %X\n", data);
- }
-
- return status;
-}
-/**
- * e1000_raise_i2c_clk - Raises the I2C SCL clock
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- *
- * Raises the I2C clock line '0'->'1'
- **/
-static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
-{
- DEBUGFUNC("e1000_raise_i2c_clk");
-
- *i2cctl |= E1000_I2C_CLK_OUT;
- *i2cctl &= ~E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- /* SCL rise time (1000ns) */
- usec_delay(E1000_I2C_T_RISE);
-}
-
-/**
- * e1000_lower_i2c_clk - Lowers the I2C SCL clock
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- *
- * Lowers the I2C clock line '1'->'0'
- **/
-static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
-{
-
- DEBUGFUNC("e1000_lower_i2c_clk");
-
- *i2cctl &= ~E1000_I2C_CLK_OUT;
- *i2cctl &= ~E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- /* SCL fall time (300ns) */
- usec_delay(E1000_I2C_T_FALL);
-}
-
-/**
- * e1000_set_i2c_data - Sets the I2C data bit
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- * @data: I2C data value (0 or 1) to set
- *
- * Sets the I2C data bit
- **/
-static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
-{
- s32 status = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_set_i2c_data");
-
- if (data)
- *i2cctl |= E1000_I2C_DATA_OUT;
- else
- *i2cctl &= ~E1000_I2C_DATA_OUT;
-
- *i2cctl &= ~E1000_I2C_DATA_OE_N;
- *i2cctl |= E1000_I2C_CLK_OE_N;
- E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
- E1000_WRITE_FLUSH(hw);
-
- /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
- usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
-
- *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- if (data != e1000_get_i2c_data(i2cctl)) {
- status = E1000_ERR_I2C;
- DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
- }
-
- return status;
-}
-
-/**
- * e1000_get_i2c_data - Reads the I2C SDA data bit
- * @hw: pointer to hardware structure
- * @i2cctl: Current value of I2CCTL register
- *
- * Returns the I2C data bit value
- **/
-static bool e1000_get_i2c_data(u32 *i2cctl)
-{
- bool data;
-
- DEBUGFUNC("e1000_get_i2c_data");
-
- if (*i2cctl & E1000_I2C_DATA_IN)
- data = 1;
- else
- data = 0;
-
- return data;
-}
-
-/**
- * e1000_i2c_bus_clear - Clears the I2C bus
- * @hw: pointer to hardware structure
- *
- * Clears the I2C bus by sending nine clock pulses.
- * Used when data line is stuck low.
- **/
-void e1000_i2c_bus_clear(struct e1000_hw *hw)
-{
- u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
- u32 i;
-
- DEBUGFUNC("e1000_i2c_bus_clear");
-
- e1000_i2c_start(hw);
-
- e1000_set_i2c_data(hw, &i2cctl, 1);
-
- for (i = 0; i < 9; i++) {
- e1000_raise_i2c_clk(hw, &i2cctl);
-
- /* Min high period of clock is 4us */
- usec_delay(E1000_I2C_T_HIGH);
-
- e1000_lower_i2c_clk(hw, &i2cctl);
-
- /* Min low period of clock is 4.7us*/
- usec_delay(E1000_I2C_T_LOW);
- }
-
- e1000_i2c_start(hw);
-
- /* Put the i2c bus back to default state */
- e1000_i2c_stop(hw);
-}
-
-static const u8 e1000_emc_temp_data[4] = {
- E1000_EMC_INTERNAL_DATA,
- E1000_EMC_DIODE1_DATA,
- E1000_EMC_DIODE2_DATA,
- E1000_EMC_DIODE3_DATA
-};
-static const u8 e1000_emc_therm_limit[4] = {
- E1000_EMC_INTERNAL_THERM_LIMIT,
- E1000_EMC_DIODE1_THERM_LIMIT,
- E1000_EMC_DIODE2_THERM_LIMIT,
- E1000_EMC_DIODE3_THERM_LIMIT
-};
-
-/**
- * e1000_get_thermal_sensor_data_generic - Gathers thermal sensor data
- * @hw: pointer to hardware structure
- *
- * Updates the temperatures in mac.thermal_sensor_data
- **/
-s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw)
-{
- s32 status = E1000_SUCCESS;
- u16 ets_offset;
- u16 ets_cfg;
- u16 ets_sensor;
- u8 num_sensors;
- u8 sensor_index;
- u8 sensor_location;
- u8 i;
- struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
-
- DEBUGFUNC("e1000_get_thermal_sensor_data_generic");
-
- if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
- return E1000_NOT_IMPLEMENTED;
-
- data->sensor[0].temp = (E1000_READ_REG(hw, E1000_THMJT) & 0xFF);
-
- /* Return the internal sensor only if ETS is unsupported */
- e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset);
- if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
- return status;
-
- e1000_read_nvm(hw, ets_offset, 1, &ets_cfg);
- if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
- != NVM_ETS_TYPE_EMC)
- return E1000_NOT_IMPLEMENTED;
-
- num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
- if (num_sensors > E1000_MAX_SENSORS)
- num_sensors = E1000_MAX_SENSORS;
-
- for (i = 1; i < num_sensors; i++) {
- e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor);
- sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
- NVM_ETS_DATA_INDEX_SHIFT);
- sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
- NVM_ETS_DATA_LOC_SHIFT);
-
- if (sensor_location != 0)
- hw->phy.ops.read_i2c_byte(hw,
- e1000_emc_temp_data[sensor_index],
- E1000_I2C_THERMAL_SENSOR_ADDR,
- &data->sensor[i].temp);
- }
- return status;
-}
-
-/**
- * e1000_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
- * @hw: pointer to hardware structure
- *
- * Sets the thermal sensor thresholds according to the NVM map
- * and save off the threshold and location values into mac.thermal_sensor_data
- **/
-s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
-{
- s32 status = E1000_SUCCESS;
- u16 ets_offset;
- u16 ets_cfg;
- u16 ets_sensor;
- u8 low_thresh_delta;
- u8 num_sensors;
- u8 sensor_index;
- u8 sensor_location;
- u8 therm_limit;
- u8 i;
- struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
-
- DEBUGFUNC("e1000_init_thermal_sensor_thresh_generic");
-
- if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
- return E1000_NOT_IMPLEMENTED;
-
- memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
-
- data->sensor[0].location = 0x1;
- data->sensor[0].caution_thresh =
- (E1000_READ_REG(hw, E1000_THHIGHTC) & 0xFF);
- data->sensor[0].max_op_thresh =
- (E1000_READ_REG(hw, E1000_THLOWTC) & 0xFF);
-
- /* Return the internal sensor only if ETS is unsupported */
- e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset);
- if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
- return status;
-
- e1000_read_nvm(hw, ets_offset, 1, &ets_cfg);
- if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
- != NVM_ETS_TYPE_EMC)
- return E1000_NOT_IMPLEMENTED;
-
- low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
- NVM_ETS_LTHRES_DELTA_SHIFT);
- num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
-
- for (i = 1; i <= num_sensors; i++) {
- e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor);
- sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
- NVM_ETS_DATA_INDEX_SHIFT);
- sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
- NVM_ETS_DATA_LOC_SHIFT);
- therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
-
- hw->phy.ops.write_i2c_byte(hw,
- e1000_emc_therm_limit[sensor_index],
- E1000_I2C_THERMAL_SENSOR_ADDR,
- therm_limit);
-
- if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
- data->sensor[i].location = sensor_location;
- data->sensor[i].caution_thresh = therm_limit;
- data->sensor[i].max_op_thresh = therm_limit -
- low_thresh_delta;
- }
- }
- return status;
-}