summaryrefslogtreecommitdiff
path: root/drivers/net/mlx5
diff options
context:
space:
mode:
authorViacheslav Ovsiienko <viacheslavo@mellanox.com>2019-07-21 14:24:59 +0000
committerFerruh Yigit <ferruh.yigit@intel.com>2019-07-23 14:31:36 +0200
commit18a1c20044c09c35b975fae3bda2352668557163 (patch)
treed0c93c3e0e324169dffb8c04ce74aa45e6ccac95 /drivers/net/mlx5
parenteb8121ab9dac7f94796f87840237d1ba09da3cb6 (diff)
downloaddpdk-18a1c20044c09c35b975fae3bda2352668557163.zip
dpdk-18a1c20044c09c35b975fae3bda2352668557163.tar.gz
dpdk-18a1c20044c09c35b975fae3bda2352668557163.tar.xz
net/mlx5: implement Tx burst template
This patch adds the implementation of tx_burst routine template. The template supports all Tx offloads and multiple optimized tx_burst routines can be generated by compiler from this one. Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com> Acked-by: Yongseok Koh <yskoh@mellanox.com>
Diffstat (limited to 'drivers/net/mlx5')
-rw-r--r--drivers/net/mlx5/mlx5_rxtx.c2922
-rw-r--r--drivers/net/mlx5/mlx5_rxtx.h5
2 files changed, 2916 insertions, 11 deletions
diff --git a/drivers/net/mlx5/mlx5_rxtx.c b/drivers/net/mlx5/mlx5_rxtx.c
index d941044..aac35b9 100644
--- a/drivers/net/mlx5/mlx5_rxtx.c
+++ b/drivers/net/mlx5/mlx5_rxtx.c
@@ -339,6 +339,109 @@ mlx5_set_swp_types_table(void)
}
/**
+ * Set Software Parser flags and offsets in Ethernet Segment of WQE.
+ * Flags must be preliminary initialized to zero.
+ *
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param swp_flags
+ * Pointer to store Software Parser flags
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * Software Parser offsets packed in dword.
+ * Software Parser flags are set by pointer.
+ */
+static __rte_always_inline uint32_t
+txq_mbuf_to_swp(struct mlx5_txq_local *restrict loc,
+ uint8_t *swp_flags,
+ unsigned int olx)
+{
+ uint64_t ol, tunnel;
+ unsigned int idx, off;
+ uint32_t set;
+
+ if (!MLX5_TXOFF_CONFIG(SWP))
+ return 0;
+ ol = loc->mbuf->ol_flags;
+ tunnel = ol & PKT_TX_TUNNEL_MASK;
+ /*
+ * Check whether Software Parser is required.
+ * Only customized tunnels may ask for.
+ */
+ if (likely(tunnel != PKT_TX_TUNNEL_UDP && tunnel != PKT_TX_TUNNEL_IP))
+ return 0;
+ /*
+ * The index should have:
+ * bit[0:1] = PKT_TX_L4_MASK
+ * bit[4] = PKT_TX_IPV6
+ * bit[8] = PKT_TX_OUTER_IPV6
+ * bit[9] = PKT_TX_OUTER_UDP
+ */
+ idx = (ol & (PKT_TX_L4_MASK | PKT_TX_IPV6 | PKT_TX_OUTER_IPV6)) >> 52;
+ idx |= (tunnel == PKT_TX_TUNNEL_UDP) ? (1 << 9) : 0;
+ *swp_flags = mlx5_swp_types_table[idx];
+ /*
+ * Set offsets for SW parser. Since ConnectX-5, SW parser just
+ * complements HW parser. SW parser starts to engage only if HW parser
+ * can't reach a header. For the older devices, HW parser will not kick
+ * in if any of SWP offsets is set. Therefore, all of the L3 offsets
+ * should be set regardless of HW offload.
+ */
+ off = loc->mbuf->outer_l2_len;
+ if (MLX5_TXOFF_CONFIG(VLAN) && ol & PKT_TX_VLAN_PKT)
+ off += sizeof(struct rte_vlan_hdr);
+ set = (off >> 1) << 8; /* Outer L3 offset. */
+ off += loc->mbuf->outer_l3_len;
+ if (tunnel == PKT_TX_TUNNEL_UDP)
+ set |= off >> 1; /* Outer L4 offset. */
+ if (ol & (PKT_TX_IPV4 | PKT_TX_IPV6)) { /* Inner IP. */
+ const uint64_t csum = ol & PKT_TX_L4_MASK;
+ off += loc->mbuf->l2_len;
+ set |= (off >> 1) << 24; /* Inner L3 offset. */
+ if (csum == PKT_TX_TCP_CKSUM ||
+ csum == PKT_TX_UDP_CKSUM ||
+ (MLX5_TXOFF_CONFIG(TSO) && ol & PKT_TX_TCP_SEG)) {
+ off += loc->mbuf->l3_len;
+ set |= (off >> 1) << 16; /* Inner L4 offset. */
+ }
+ }
+ set = rte_cpu_to_le_32(set);
+ return set;
+}
+
+/**
+ * Convert the Checksum offloads to Verbs.
+ *
+ * @param buf
+ * Pointer to the mbuf.
+ *
+ * @return
+ * Converted checksum flags.
+ */
+static __rte_always_inline uint8_t
+txq_ol_cksum_to_cs(struct rte_mbuf *buf)
+{
+ uint32_t idx;
+ uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK);
+ const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK |
+ PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM;
+
+ /*
+ * The index should have:
+ * bit[0] = PKT_TX_TCP_SEG
+ * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
+ * bit[4] = PKT_TX_IP_CKSUM
+ * bit[8] = PKT_TX_OUTER_IP_CKSUM
+ * bit[9] = tunnel
+ */
+ idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9);
+ return mlx5_cksum_table[idx];
+}
+
+/**
* Internal function to compute the number of used descriptors in an RX queue
*
* @param rxq
@@ -543,7 +646,7 @@ check_err_cqe_seen(volatile struct mlx5_err_cqe *err_cqe)
* The last Tx buffer element to free.
*/
uint16_t
-mlx5_tx_error_cqe_handle(struct mlx5_txq_data *txq,
+mlx5_tx_error_cqe_handle(struct mlx5_txq_data *restrict txq,
volatile struct mlx5_err_cqe *err_cqe)
{
if (err_cqe->syndrome != MLX5_CQE_SYNDROME_WR_FLUSH_ERR) {
@@ -1563,6 +1666,298 @@ mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
}
/**
+ * Free the mbufs from the linear array of pointers.
+ *
+ * @param pkts
+ * Pointer to array of packets to be free.
+ * @param pkts_n
+ * Number of packets to be freed.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_free_mbuf(struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ unsigned int olx __rte_unused)
+{
+ struct rte_mempool *pool = NULL;
+ struct rte_mbuf **p_free = NULL;
+ struct rte_mbuf *mbuf;
+ unsigned int n_free = 0;
+
+ /*
+ * The implemented algorithm eliminates
+ * copying pointers to temporary array
+ * for rte_mempool_put_bulk() calls.
+ */
+ assert(pkts);
+ assert(pkts_n);
+ for (;;) {
+ for (;;) {
+ /*
+ * Decrement mbuf reference counter, detach
+ * indirect and external buffers if needed.
+ */
+ mbuf = rte_pktmbuf_prefree_seg(*pkts);
+ if (likely(mbuf != NULL)) {
+ assert(mbuf == *pkts);
+ if (likely(n_free != 0)) {
+ if (unlikely(pool != mbuf->pool))
+ /* From different pool. */
+ break;
+ } else {
+ /* Start new scan array. */
+ pool = mbuf->pool;
+ p_free = pkts;
+ }
+ ++n_free;
+ ++pkts;
+ --pkts_n;
+ if (unlikely(pkts_n == 0)) {
+ mbuf = NULL;
+ break;
+ }
+ } else {
+ /*
+ * This happens if mbuf is still referenced.
+ * We can't put it back to the pool, skip.
+ */
+ ++pkts;
+ --pkts_n;
+ if (unlikely(n_free != 0))
+ /* There is some array to free.*/
+ break;
+ if (unlikely(pkts_n == 0))
+ /* Last mbuf, nothing to free. */
+ return;
+ }
+ }
+ for (;;) {
+ /*
+ * This loop is implemented to avoid multiple
+ * inlining of rte_mempool_put_bulk().
+ */
+ assert(pool);
+ assert(p_free);
+ assert(n_free);
+ /*
+ * Free the array of pre-freed mbufs
+ * belonging to the same memory pool.
+ */
+ rte_mempool_put_bulk(pool, (void *)p_free, n_free);
+ if (unlikely(mbuf != NULL)) {
+ /* There is the request to start new scan. */
+ pool = mbuf->pool;
+ p_free = pkts++;
+ n_free = 1;
+ --pkts_n;
+ if (likely(pkts_n != 0))
+ break;
+ /*
+ * This is the last mbuf to be freed.
+ * Do one more loop iteration to complete.
+ * This is rare case of the last unique mbuf.
+ */
+ mbuf = NULL;
+ continue;
+ }
+ if (likely(pkts_n == 0))
+ return;
+ n_free = 0;
+ break;
+ }
+ }
+}
+
+/**
+ * Free the mbuf from the elts ring buffer till new tail.
+ *
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param tail
+ * Index in elts to free up to, becomes new elts tail.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_free_elts(struct mlx5_txq_data *restrict txq,
+ uint16_t tail,
+ unsigned int olx __rte_unused)
+{
+ uint16_t n_elts = tail - txq->elts_tail;
+
+ assert(n_elts);
+ assert(n_elts <= txq->elts_s);
+ /*
+ * Implement a loop to support ring buffer wraparound
+ * with single inlining of mlx5_tx_free_mbuf().
+ */
+ do {
+ unsigned int part;
+
+ part = txq->elts_s - (txq->elts_tail & txq->elts_m);
+ part = RTE_MIN(part, n_elts);
+ assert(part);
+ assert(part <= txq->elts_s);
+ mlx5_tx_free_mbuf(&txq->elts[txq->elts_tail & txq->elts_m],
+ part, olx);
+ txq->elts_tail += part;
+ n_elts -= part;
+ } while (n_elts);
+}
+
+/**
+ * Store the mbuf being sent into elts ring buffer.
+ * On Tx completion these mbufs will be freed.
+ *
+ * @param txq
+ * Pointer to Tx queue structure.
+ * @param pkts
+ * Pointer to array of packets to be stored.
+ * @param pkts_n
+ * Number of packets to be stored.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_copy_elts(struct mlx5_txq_data *restrict txq,
+ struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ unsigned int olx __rte_unused)
+{
+ unsigned int part;
+ struct rte_mbuf **elts = (struct rte_mbuf **)txq->elts;
+
+ assert(pkts);
+ assert(pkts_n);
+ part = txq->elts_s - (txq->elts_head & txq->elts_m);
+ assert(part);
+ assert(part <= txq->elts_s);
+ /* This code is a good candidate for vectorizing with SIMD. */
+ rte_memcpy((void *)(elts + (txq->elts_head & txq->elts_m)),
+ (void *)pkts,
+ RTE_MIN(part, pkts_n) * sizeof(struct rte_mbuf *));
+ txq->elts_head += pkts_n;
+ if (unlikely(part < pkts_n))
+ /* The copy is wrapping around the elts array. */
+ rte_memcpy((void *)elts, (void *)(pkts + part),
+ (pkts_n - part) * sizeof(struct rte_mbuf *));
+}
+
+/**
+ * Manage TX completions. This routine checks the CQ for
+ * arrived CQEs, deduces the last accomplished WQE in SQ,
+ * updates SQ producing index and frees all completed mbufs.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * NOTE: not inlined intentionally, it makes tx_burst
+ * routine smaller, simple and faster - from experiments.
+ */
+static void
+mlx5_tx_handle_completion(struct mlx5_txq_data *restrict txq,
+ unsigned int olx __rte_unused)
+{
+ bool update = false;
+ int ret;
+
+ do {
+ volatile struct mlx5_wqe_cseg *cseg;
+ volatile struct mlx5_cqe *cqe;
+ uint16_t tail;
+
+ cqe = &txq->cqes[txq->cq_ci & txq->cqe_m];
+ ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci);
+ if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
+ if (likely(ret != MLX5_CQE_STATUS_ERR)) {
+ /* No new CQEs in completion queue. */
+ assert(ret == MLX5_CQE_STATUS_HW_OWN);
+ if (likely(update)) {
+ /* Update the consumer index. */
+ rte_compiler_barrier();
+ *txq->cq_db =
+ rte_cpu_to_be_32(txq->cq_ci);
+ }
+ return;
+ }
+ /* Some error occurred, try to restart. */
+ rte_wmb();
+ tail = mlx5_tx_error_cqe_handle
+ (txq, (volatile struct mlx5_err_cqe *)cqe);
+ } else {
+ /* Normal transmit completion. */
+ ++txq->cq_ci;
+ rte_cio_rmb();
+ txq->wqe_pi = rte_be_to_cpu_16(cqe->wqe_counter);
+ cseg = (volatile struct mlx5_wqe_cseg *)
+ (txq->wqes + (txq->wqe_pi & txq->wqe_m));
+ tail = cseg->misc;
+ }
+#ifndef NDEBUG
+ if (txq->cq_pi)
+ --txq->cq_pi;
+#endif
+ if (likely(tail != txq->elts_tail)) {
+ /* Free data buffers from elts. */
+ mlx5_tx_free_elts(txq, tail, olx);
+ assert(tail == txq->elts_tail);
+ }
+ update = true;
+ } while (true);
+}
+
+/**
+ * Check if the completion request flag should be set in the last WQE.
+ * Both pushed mbufs and WQEs are monitored and the completion request
+ * flag is set if any of thresholds is reached.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param n_mbuf
+ * Number of mbuf not stored yet in elts array.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_request_completion(struct mlx5_txq_data *restrict txq,
+ unsigned int n_mbuf,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx __rte_unused)
+{
+ uint16_t head = txq->elts_head + n_mbuf;
+
+ if ((uint16_t)(head - txq->elts_comp) >= MLX5_TX_COMP_THRESH ||
+ (uint16_t)(txq->wqe_ci - txq->wqe_comp) >= txq->wqe_thres) {
+ volatile struct mlx5_wqe *last = loc->wqe_last;
+
+ txq->elts_comp = head;
+ txq->wqe_comp = txq->wqe_ci;
+ /* Request unconditional completion on last WQE. */
+ last->cseg.flags = RTE_BE32(MLX5_COMP_ALWAYS <<
+ MLX5_COMP_MODE_OFFSET);
+ /* Save elts_head in unused "immediate" field of WQE. */
+ last->cseg.misc = head;
+ /*
+ * A CQE slot must always be available. Count the
+ * issued CEQ "always" request instead of production
+ * index due to here can be CQE with errors and
+ * difference with ci may become inconsistent.
+ */
+ assert(txq->cqe_s > ++txq->cq_pi);
+ }
+}
+
+/**
* DPDK callback to check the status of a tx descriptor.
*
* @param tx_queue
@@ -1576,9 +1971,2291 @@ mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
int
mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
- (void)tx_queue;
- (void)offset;
- return RTE_ETH_TX_DESC_FULL;
+ struct mlx5_txq_data *restrict txq = tx_queue;
+ uint16_t used;
+
+ mlx5_tx_handle_completion(txq, 0);
+ used = txq->elts_head - txq->elts_tail;
+ if (offset < used)
+ return RTE_ETH_TX_DESC_FULL;
+ return RTE_ETH_TX_DESC_DONE;
+}
+
+/**
+ * Build the Control Segment with specified opcode:
+ * - MLX5_OPCODE_SEND
+ * - MLX5_OPCODE_ENHANCED_MPSW
+ * - MLX5_OPCODE_TSO
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param wqe
+ * Pointer to WQE to fill with built Control Segment.
+ * @param ds
+ * Supposed length of WQE in segments.
+ * @param opcode
+ * SQ WQE opcode to put into Control Segment.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_cseg_init(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc __rte_unused,
+ struct mlx5_wqe *restrict wqe,
+ unsigned int ds,
+ unsigned int opcode,
+ unsigned int olx __rte_unused)
+{
+ struct mlx5_wqe_cseg *restrict cs = &wqe->cseg;
+
+ cs->opcode = rte_cpu_to_be_32((txq->wqe_ci << 8) | opcode);
+ cs->sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
+ cs->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
+ MLX5_COMP_MODE_OFFSET);
+ cs->misc = RTE_BE32(0);
+}
+
+/**
+ * Build the Ethernet Segment without inlined data.
+ * Supports Software Parser, Checksums and VLAN
+ * insertion Tx offload features.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param wqe
+ * Pointer to WQE to fill with built Ethernet Segment.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_eseg_none(struct mlx5_txq_data *restrict txq __rte_unused,
+ struct mlx5_txq_local *restrict loc,
+ struct mlx5_wqe *restrict wqe,
+ unsigned int olx)
+{
+ struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
+ uint32_t csum;
+
+ /*
+ * Calculate and set check sum flags first, dword field
+ * in segment may be shared with Software Parser flags.
+ */
+ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
+ es->flags = rte_cpu_to_le_32(csum);
+ /*
+ * Calculate and set Software Parser offsets and flags.
+ * These flags a set for custom UDP and IP tunnel packets.
+ */
+ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
+ /* Fill metadata field if needed. */
+ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
+ loc->mbuf->ol_flags & PKT_TX_METADATA ?
+ loc->mbuf->tx_metadata : 0 : 0;
+ /* Engage VLAN tag insertion feature if requested. */
+ if (MLX5_TXOFF_CONFIG(VLAN) &&
+ loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
+ /*
+ * We should get here only if device support
+ * this feature correctly.
+ */
+ assert(txq->vlan_en);
+ es->inline_hdr = rte_cpu_to_be_32(MLX5_ETH_WQE_VLAN_INSERT |
+ loc->mbuf->vlan_tci);
+ } else {
+ es->inline_hdr = RTE_BE32(0);
+ }
+}
+
+/**
+ * Build the Ethernet Segment with minimal inlined data
+ * of MLX5_ESEG_MIN_INLINE_SIZE bytes length. This is
+ * used to fill the gap in single WQEBB WQEs.
+ * Supports Software Parser, Checksums and VLAN
+ * insertion Tx offload features.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param wqe
+ * Pointer to WQE to fill with built Ethernet Segment.
+ * @param vlan
+ * Length of VLAN tag insertion if any.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_eseg_dmin(struct mlx5_txq_data *restrict txq __rte_unused,
+ struct mlx5_txq_local *restrict loc,
+ struct mlx5_wqe *restrict wqe,
+ unsigned int vlan,
+ unsigned int olx)
+{
+ struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
+ uint32_t csum;
+ uint8_t *psrc, *pdst;
+
+ /*
+ * Calculate and set check sum flags first, dword field
+ * in segment may be shared with Software Parser flags.
+ */
+ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
+ es->flags = rte_cpu_to_le_32(csum);
+ /*
+ * Calculate and set Software Parser offsets and flags.
+ * These flags a set for custom UDP and IP tunnel packets.
+ */
+ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
+ /* Fill metadata field if needed. */
+ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
+ loc->mbuf->ol_flags & PKT_TX_METADATA ?
+ loc->mbuf->tx_metadata : 0 : 0;
+ static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
+ (sizeof(uint16_t) +
+ sizeof(rte_v128u32_t)),
+ "invalid Ethernet Segment data size");
+ static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
+ (sizeof(uint16_t) +
+ sizeof(struct rte_vlan_hdr) +
+ 2 * RTE_ETHER_ADDR_LEN),
+ "invalid Ethernet Segment data size");
+ psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
+ es->inline_hdr_sz = RTE_BE16(MLX5_ESEG_MIN_INLINE_SIZE);
+ es->inline_data = *(unaligned_uint16_t *)psrc;
+ psrc += sizeof(uint16_t);
+ pdst = (uint8_t *)(es + 1);
+ if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
+ /* Implement VLAN tag insertion as part inline data. */
+ memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
+ pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
+ psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
+ /* Insert VLAN ethertype + VLAN tag. */
+ *(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
+ ((RTE_ETHER_TYPE_VLAN << 16) |
+ loc->mbuf->vlan_tci);
+ pdst += sizeof(struct rte_vlan_hdr);
+ /* Copy the rest two bytes from packet data. */
+ assert(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
+ *(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
+ } else {
+ /* Fill the gap in the title WQEBB with inline data. */
+ rte_mov16(pdst, psrc);
+ }
+}
+
+/**
+ * Build the Ethernet Segment with entire packet
+ * data inlining. Checks the boundary of WQEBB and
+ * ring buffer wrapping, supports Software Parser,
+ * Checksums and VLAN insertion Tx offload features.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param wqe
+ * Pointer to WQE to fill with built Ethernet Segment.
+ * @param vlan
+ * Length of VLAN tag insertion if any.
+ * @param inlen
+ * Length of data to inline (VLAN included, if any).
+ * @param tso
+ * TSO flag, set mss field from the packet.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * Pointer to the next Data Segment (aligned and wrapped around).
+ */
+static __rte_always_inline struct mlx5_wqe_dseg *
+mlx5_tx_eseg_data(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ struct mlx5_wqe *restrict wqe,
+ unsigned int vlan,
+ unsigned int inlen,
+ unsigned int tso,
+ unsigned int olx)
+{
+ struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
+ uint32_t csum;
+ uint8_t *psrc, *pdst;
+ unsigned int part;
+
+ /*
+ * Calculate and set check sum flags first, dword field
+ * in segment may be shared with Software Parser flags.
+ */
+ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
+ if (tso) {
+ csum <<= 24;
+ csum |= loc->mbuf->tso_segsz;
+ es->flags = rte_cpu_to_be_32(csum);
+ } else {
+ es->flags = rte_cpu_to_le_32(csum);
+ }
+ /*
+ * Calculate and set Software Parser offsets and flags.
+ * These flags a set for custom UDP and IP tunnel packets.
+ */
+ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
+ /* Fill metadata field if needed. */
+ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
+ loc->mbuf->ol_flags & PKT_TX_METADATA ?
+ loc->mbuf->tx_metadata : 0 : 0;
+ static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
+ (sizeof(uint16_t) +
+ sizeof(rte_v128u32_t)),
+ "invalid Ethernet Segment data size");
+ static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
+ (sizeof(uint16_t) +
+ sizeof(struct rte_vlan_hdr) +
+ 2 * RTE_ETHER_ADDR_LEN),
+ "invalid Ethernet Segment data size");
+ psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
+ es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
+ es->inline_data = *(unaligned_uint16_t *)psrc;
+ psrc += sizeof(uint16_t);
+ pdst = (uint8_t *)(es + 1);
+ if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
+ /* Implement VLAN tag insertion as part inline data. */
+ memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
+ pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
+ psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
+ /* Insert VLAN ethertype + VLAN tag. */
+ *(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
+ ((RTE_ETHER_TYPE_VLAN << 16) |
+ loc->mbuf->vlan_tci);
+ pdst += sizeof(struct rte_vlan_hdr);
+ /* Copy the rest two bytes from packet data. */
+ assert(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
+ *(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
+ psrc += sizeof(uint16_t);
+ } else {
+ /* Fill the gap in the title WQEBB with inline data. */
+ rte_mov16(pdst, psrc);
+ psrc += sizeof(rte_v128u32_t);
+ }
+ pdst = (uint8_t *)(es + 2);
+ assert(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
+ assert(pdst < (uint8_t *)txq->wqes_end);
+ inlen -= MLX5_ESEG_MIN_INLINE_SIZE;
+ if (!inlen) {
+ assert(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
+ return (struct mlx5_wqe_dseg *)pdst;
+ }
+ /*
+ * The WQEBB space availability is checked by caller.
+ * Here we should be aware of WQE ring buffer wraparound only.
+ */
+ part = (uint8_t *)txq->wqes_end - pdst;
+ part = RTE_MIN(part, inlen);
+ do {
+ rte_memcpy(pdst, psrc, part);
+ inlen -= part;
+ if (likely(!inlen)) {
+ /*
+ * If return value is not used by the caller
+ * the code below will be optimized out.
+ */
+ pdst += part;
+ pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
+ if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
+ pdst = (uint8_t *)txq->wqes;
+ return (struct mlx5_wqe_dseg *)pdst;
+ }
+ pdst = (uint8_t *)txq->wqes;
+ psrc += part;
+ part = inlen;
+ } while (true);
+}
+
+/**
+ * Copy data from chain of mbuf to the specified linear buffer.
+ * Checksums and VLAN insertion Tx offload features. If data
+ * from some mbuf copied completely this mbuf is freed. Local
+ * structure is used to keep the byte stream state.
+ *
+ * @param pdst
+ * Pointer to the destination linear buffer.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param len
+ * Length of data to be copied.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_mseg_memcpy(uint8_t *pdst,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int len,
+ unsigned int olx __rte_unused)
+{
+ struct rte_mbuf *mbuf;
+ unsigned int part, dlen;
+ uint8_t *psrc;
+
+ assert(len);
+ do {
+ /* Allow zero length packets, must check first. */
+ dlen = rte_pktmbuf_data_len(loc->mbuf);
+ if (dlen <= loc->mbuf_off) {
+ /* Exhausted packet, just free. */
+ mbuf = loc->mbuf;
+ loc->mbuf = mbuf->next;
+ rte_pktmbuf_free_seg(mbuf);
+ loc->mbuf_off = 0;
+ assert(loc->mbuf_nseg > 1);
+ assert(loc->mbuf);
+ --loc->mbuf_nseg;
+ continue;
+ }
+ dlen -= loc->mbuf_off;
+ psrc = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
+ loc->mbuf_off);
+ part = RTE_MIN(len, dlen);
+ rte_memcpy(pdst, psrc, part);
+ loc->mbuf_off += part;
+ len -= part;
+ if (!len) {
+ if (loc->mbuf_off >= rte_pktmbuf_data_len(loc->mbuf)) {
+ loc->mbuf_off = 0;
+ /* Exhausted packet, just free. */
+ mbuf = loc->mbuf;
+ loc->mbuf = mbuf->next;
+ rte_pktmbuf_free_seg(mbuf);
+ loc->mbuf_off = 0;
+ assert(loc->mbuf_nseg >= 1);
+ --loc->mbuf_nseg;
+ }
+ return;
+ }
+ pdst += part;
+ } while (true);
+}
+
+/**
+ * Build the Ethernet Segment with inlined data from
+ * multi-segment packet. Checks the boundary of WQEBB
+ * and ring buffer wrapping, supports Software Parser,
+ * Checksums and VLAN insertion Tx offload features.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param wqe
+ * Pointer to WQE to fill with built Ethernet Segment.
+ * @param vlan
+ * Length of VLAN tag insertion if any.
+ * @param inlen
+ * Length of data to inline (VLAN included, if any).
+ * @param tso
+ * TSO flag, set mss field from the packet.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * Pointer to the next Data Segment (aligned and
+ * possible NOT wrapped around - caller should do
+ * wrapping check on its own).
+ */
+static __rte_always_inline struct mlx5_wqe_dseg *
+mlx5_tx_eseg_mdat(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ struct mlx5_wqe *restrict wqe,
+ unsigned int vlan,
+ unsigned int inlen,
+ unsigned int tso,
+ unsigned int olx)
+{
+ struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
+ uint32_t csum;
+ uint8_t *pdst;
+ unsigned int part;
+
+ /*
+ * Calculate and set check sum flags first, uint32_t field
+ * in segment may be shared with Software Parser flags.
+ */
+ csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
+ if (tso) {
+ csum <<= 24;
+ csum |= loc->mbuf->tso_segsz;
+ es->flags = rte_cpu_to_be_32(csum);
+ } else {
+ es->flags = rte_cpu_to_le_32(csum);
+ }
+ /*
+ * Calculate and set Software Parser offsets and flags.
+ * These flags a set for custom UDP and IP tunnel packets.
+ */
+ es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
+ /* Fill metadata field if needed. */
+ es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
+ loc->mbuf->ol_flags & PKT_TX_METADATA ?
+ loc->mbuf->tx_metadata : 0 : 0;
+ static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
+ (sizeof(uint16_t) +
+ sizeof(rte_v128u32_t)),
+ "invalid Ethernet Segment data size");
+ static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
+ (sizeof(uint16_t) +
+ sizeof(struct rte_vlan_hdr) +
+ 2 * RTE_ETHER_ADDR_LEN),
+ "invalid Ethernet Segment data size");
+ assert(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
+ es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
+ pdst = (uint8_t *)&es->inline_data;
+ if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
+ /* Implement VLAN tag insertion as part inline data. */
+ mlx5_tx_mseg_memcpy(pdst, loc, 2 * RTE_ETHER_ADDR_LEN, olx);
+ pdst += 2 * RTE_ETHER_ADDR_LEN;
+ *(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
+ ((RTE_ETHER_TYPE_VLAN << 16) |
+ loc->mbuf->vlan_tci);
+ pdst += sizeof(struct rte_vlan_hdr);
+ inlen -= 2 * RTE_ETHER_ADDR_LEN + sizeof(struct rte_vlan_hdr);
+ }
+ assert(pdst < (uint8_t *)txq->wqes_end);
+ /*
+ * The WQEBB space availability is checked by caller.
+ * Here we should be aware of WQE ring buffer wraparound only.
+ */
+ part = (uint8_t *)txq->wqes_end - pdst;
+ part = RTE_MIN(part, inlen);
+ assert(part);
+ do {
+ mlx5_tx_mseg_memcpy(pdst, loc, part, olx);
+ inlen -= part;
+ if (likely(!inlen)) {
+ pdst += part;
+ pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
+ return (struct mlx5_wqe_dseg *)pdst;
+ }
+ pdst = (uint8_t *)txq->wqes;
+ part = inlen;
+ } while (true);
+}
+
+/**
+ * Build the Data Segment of pointer type.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param dseg
+ * Pointer to WQE to fill with built Data Segment.
+ * @param buf
+ * Data buffer to point.
+ * @param len
+ * Data buffer length.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_dseg_ptr(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ struct mlx5_wqe_dseg *restrict dseg,
+ uint8_t *buf,
+ unsigned int len,
+ unsigned int olx __rte_unused)
+
+{
+ assert(len);
+ dseg->bcount = rte_cpu_to_be_32(len);
+ dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
+ dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
+}
+
+/**
+ * Build the Data Segment of pointer type or inline
+ * if data length is less than buffer in minimal
+ * Data Segment size.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param dseg
+ * Pointer to WQE to fill with built Data Segment.
+ * @param buf
+ * Data buffer to point.
+ * @param len
+ * Data buffer length.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ */
+static __rte_always_inline void
+mlx5_tx_dseg_iptr(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ struct mlx5_wqe_dseg *restrict dseg,
+ uint8_t *buf,
+ unsigned int len,
+ unsigned int olx __rte_unused)
+
+{
+ uintptr_t dst, src;
+
+ assert(len);
+ if (len > MLX5_DSEG_MIN_INLINE_SIZE) {
+ dseg->bcount = rte_cpu_to_be_32(len);
+ dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
+ dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
+
+ return;
+ }
+ dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
+ /* Unrolled implementation of generic rte_memcpy. */
+ dst = (uintptr_t)&dseg->inline_data[0];
+ src = (uintptr_t)buf;
+#ifdef RTE_ARCH_STRICT_ALIGN
+ memcpy(dst, src, len);
+#else
+ if (len & 0x08) {
+ *(uint64_t *)dst = *(uint64_t *)src;
+ dst += sizeof(uint64_t);
+ src += sizeof(uint64_t);
+ }
+ if (len & 0x04) {
+ *(uint32_t *)dst = *(uint32_t *)src;
+ dst += sizeof(uint32_t);
+ src += sizeof(uint32_t);
+ }
+ if (len & 0x02) {
+ *(uint16_t *)dst = *(uint16_t *)src;
+ dst += sizeof(uint16_t);
+ src += sizeof(uint16_t);
+ }
+ if (len & 0x01)
+ *(uint8_t *)dst = *(uint8_t *)src;
+#endif
+}
+
+/**
+ * Build the Data Segment of inlined data from single
+ * segment packet, no VLAN insertion.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param dseg
+ * Pointer to WQE to fill with built Data Segment.
+ * @param buf
+ * Data buffer to point.
+ * @param len
+ * Data buffer length.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * Pointer to the next Data Segment after inlined data.
+ * Ring buffer wraparound check is needed. We do not
+ * do it here because it may not be needed for the
+ * last packet in the eMPW session.
+ */
+static __rte_always_inline struct mlx5_wqe_dseg *
+mlx5_tx_dseg_empw(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc __rte_unused,
+ struct mlx5_wqe_dseg *restrict dseg,
+ uint8_t *buf,
+ unsigned int len,
+ unsigned int olx __rte_unused)
+{
+ unsigned int part;
+ uint8_t *pdst;
+
+ dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
+ pdst = &dseg->inline_data[0];
+ /*
+ * The WQEBB space availability is checked by caller.
+ * Here we should be aware of WQE ring buffer wraparound only.
+ */
+ part = (uint8_t *)txq->wqes_end - pdst;
+ part = RTE_MIN(part, len);
+ do {
+ rte_memcpy(pdst, buf, part);
+ len -= part;
+ if (likely(!len)) {
+ pdst += part;
+ pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
+ /* Note: no final wraparound check here. */
+ return (struct mlx5_wqe_dseg *)pdst;
+ }
+ pdst = (uint8_t *)txq->wqes;
+ buf += part;
+ part = len;
+ } while (true);
+}
+
+/**
+ * Build the Data Segment of inlined data from single
+ * segment packet with VLAN insertion.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param dseg
+ * Pointer to the dseg fill with built Data Segment.
+ * @param buf
+ * Data buffer to point.
+ * @param len
+ * Data buffer length.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * Pointer to the next Data Segment after inlined data.
+ * Ring buffer wraparound check is needed.
+ */
+static __rte_always_inline struct mlx5_wqe_dseg *
+mlx5_tx_dseg_vlan(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc __rte_unused,
+ struct mlx5_wqe_dseg *restrict dseg,
+ uint8_t *buf,
+ unsigned int len,
+ unsigned int olx __rte_unused)
+
+{
+ unsigned int part;
+ uint8_t *pdst;
+
+ assert(len > MLX5_ESEG_MIN_INLINE_SIZE);
+ static_assert(MLX5_DSEG_MIN_INLINE_SIZE ==
+ (2 * RTE_ETHER_ADDR_LEN),
+ "invalid Data Segment data size");
+ dseg->bcount = rte_cpu_to_be_32((len + sizeof(struct rte_vlan_hdr)) |
+ MLX5_ETH_WQE_DATA_INLINE);
+ pdst = &dseg->inline_data[0];
+ memcpy(pdst, buf, MLX5_DSEG_MIN_INLINE_SIZE);
+ buf += MLX5_DSEG_MIN_INLINE_SIZE;
+ pdst += MLX5_DSEG_MIN_INLINE_SIZE;
+ /* Insert VLAN ethertype + VLAN tag. Pointer is aligned. */
+ assert(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
+ *(uint32_t *)pdst = rte_cpu_to_be_32((RTE_ETHER_TYPE_VLAN << 16) |
+ loc->mbuf->vlan_tci);
+ pdst += sizeof(struct rte_vlan_hdr);
+ if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
+ pdst = (uint8_t *)txq->wqes;
+ /*
+ * The WQEBB space availability is checked by caller.
+ * Here we should be aware of WQE ring buffer wraparound only.
+ */
+ part = (uint8_t *)txq->wqes_end - pdst;
+ part = RTE_MIN(part, len);
+ do {
+ rte_memcpy(pdst, buf, part);
+ len -= part;
+ if (likely(!len)) {
+ pdst += part;
+ pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
+ /* Note: no final wraparound check here. */
+ return (struct mlx5_wqe_dseg *)pdst;
+ }
+ pdst = (uint8_t *)txq->wqes;
+ buf += part;
+ part = len;
+ } while (true);
+}
+
+/**
+ * Build the Ethernet Segment with optionally inlined data with
+ * VLAN insertion and following Data Segments (if any) from
+ * multi-segment packet. Used by ordinary send and TSO.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param wqe
+ * Pointer to WQE to fill with built Ethernet/Data Segments.
+ * @param vlan
+ * Length of VLAN header to insert, 0 means no VLAN insertion.
+ * @param inlen
+ * Data length to inline. For TSO this parameter specifies
+ * exact value, for ordinary send routine can be aligned by
+ * caller to provide better WQE space saving and data buffer
+ * start address alignment. This length includes VLAN header
+ * being inserted.
+ * @param tso
+ * Zero means ordinary send, inlined data can be extended,
+ * otherwise this is TSO, inlined data length is fixed.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * Actual size of built WQE in segments.
+ */
+static __rte_always_inline unsigned int
+mlx5_tx_mseg_build(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ struct mlx5_wqe *restrict wqe,
+ unsigned int vlan,
+ unsigned int inlen,
+ unsigned int tso,
+ unsigned int olx __rte_unused)
+{
+ struct mlx5_wqe_dseg *restrict dseg;
+ unsigned int ds;
+
+ assert((rte_pktmbuf_pkt_len(loc->mbuf) + vlan) >= inlen);
+ loc->mbuf_nseg = NB_SEGS(loc->mbuf);
+ loc->mbuf_off = 0;
+
+ dseg = mlx5_tx_eseg_mdat(txq, loc, wqe, vlan, inlen, tso, olx);
+ if (!loc->mbuf_nseg)
+ goto dseg_done;
+ /*
+ * There are still some mbuf remaining, not inlined.
+ * The first mbuf may be partially inlined and we
+ * must process the possible non-zero data offset.
+ */
+ if (loc->mbuf_off) {
+ unsigned int dlen;
+ uint8_t *dptr;
+
+ /*
+ * Exhausted packets must be dropped before.
+ * Non-zero offset means there are some data
+ * remained in the packet.
+ */
+ assert(loc->mbuf_off < rte_pktmbuf_data_len(loc->mbuf));
+ assert(rte_pktmbuf_data_len(loc->mbuf));
+ dptr = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
+ loc->mbuf_off);
+ dlen = rte_pktmbuf_data_len(loc->mbuf) - loc->mbuf_off;
+ /*
+ * Build the pointer/minimal data Data Segment.
+ * Do ring buffer wrapping check in advance.
+ */
+ if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
+ dseg = (struct mlx5_wqe_dseg *)txq->wqes;
+ mlx5_tx_dseg_iptr(txq, loc, dseg, dptr, dlen, olx);
+ /* Store the mbuf to be freed on completion. */
+ assert(loc->elts_free);
+ txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
+ --loc->elts_free;
+ ++dseg;
+ if (--loc->mbuf_nseg == 0)
+ goto dseg_done;
+ loc->mbuf = loc->mbuf->next;
+ loc->mbuf_off = 0;
+ }
+ do {
+ if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
+ struct rte_mbuf *mbuf;
+
+ /* Zero length segment found, just skip. */
+ mbuf = loc->mbuf;
+ loc->mbuf = loc->mbuf->next;
+ rte_pktmbuf_free_seg(mbuf);
+ if (--loc->mbuf_nseg == 0)
+ break;
+ } else {
+ if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
+ dseg = (struct mlx5_wqe_dseg *)txq->wqes;
+ mlx5_tx_dseg_iptr
+ (txq, loc, dseg,
+ rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
+ rte_pktmbuf_data_len(loc->mbuf), olx);
+ assert(loc->elts_free);
+ txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
+ --loc->elts_free;
+ ++dseg;
+ if (--loc->mbuf_nseg == 0)
+ break;
+ loc->mbuf = loc->mbuf->next;
+ }
+ } while (true);
+
+dseg_done:
+ /* Calculate actual segments used from the dseg pointer. */
+ if ((uintptr_t)wqe < (uintptr_t)dseg)
+ ds = ((uintptr_t)dseg - (uintptr_t)wqe) / MLX5_WSEG_SIZE;
+ else
+ ds = (((uintptr_t)dseg - (uintptr_t)wqe) +
+ txq->wqe_s * MLX5_WQE_SIZE) / MLX5_WSEG_SIZE;
+ return ds;
+}
+
+/**
+ * Tx one packet function for multi-segment TSO. Supports all
+ * types of Tx offloads, uses MLX5_OPCODE_TSO to build WQEs,
+ * sends one packet per WQE.
+ *
+ * This routine is responsible for storing processed mbuf
+ * into elts ring buffer and update elts_head.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
+ * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
+ * Local context variables partially updated.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_packet_multi_tso(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ struct mlx5_wqe *restrict wqe;
+ unsigned int ds, dlen, inlen, ntcp, vlan = 0;
+
+ /*
+ * Calculate data length to be inlined to estimate
+ * the required space in WQE ring buffer.
+ */
+ dlen = rte_pktmbuf_pkt_len(loc->mbuf);
+ if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
+ vlan = sizeof(struct rte_vlan_hdr);
+ inlen = loc->mbuf->l2_len + vlan +
+ loc->mbuf->l3_len + loc->mbuf->l4_len;
+ if (unlikely((!inlen || !loc->mbuf->tso_segsz)))
+ return MLX5_TXCMP_CODE_ERROR;
+ if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
+ inlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len;
+ /* Packet must contain all TSO headers. */
+ if (unlikely(inlen > MLX5_MAX_TSO_HEADER ||
+ inlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
+ inlen > (dlen + vlan)))
+ return MLX5_TXCMP_CODE_ERROR;
+ assert(inlen >= txq->inlen_mode);
+ /*
+ * Check whether there are enough free WQEBBs:
+ * - Control Segment
+ * - Ethernet Segment
+ * - First Segment of inlined Ethernet data
+ * - ... data continued ...
+ * - Data Segments of pointer/min inline type
+ */
+ ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
+ MLX5_ESEG_MIN_INLINE_SIZE +
+ MLX5_WSEG_SIZE +
+ MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
+ if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
+ return MLX5_TXCMP_CODE_EXIT;
+ /* Check for maximal WQE size. */
+ if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
+ return MLX5_TXCMP_CODE_ERROR;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes/packets counters. */
+ ntcp = (dlen - (inlen - vlan) + loc->mbuf->tso_segsz - 1) /
+ loc->mbuf->tso_segsz;
+ /*
+ * One will be added for mbuf itself
+ * at the end of the mlx5_tx_burst from
+ * loc->pkts_sent field.
+ */
+ --ntcp;
+ txq->stats.opackets += ntcp;
+ txq->stats.obytes += dlen + vlan + ntcp * inlen;
+#endif
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_TSO, olx);
+ ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 1, olx);
+ wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
+ txq->wqe_ci += (ds + 3) / 4;
+ loc->wqe_free -= (ds + 3) / 4;
+ return MLX5_TXCMP_CODE_MULTI;
+}
+
+/**
+ * Tx one packet function for multi-segment SEND. Supports all
+ * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
+ * sends one packet per WQE, without any data inlining in
+ * Ethernet Segment.
+ *
+ * This routine is responsible for storing processed mbuf
+ * into elts ring buffer and update elts_head.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
+ * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
+ * Local context variables partially updated.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_packet_multi_send(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ struct mlx5_wqe_dseg *restrict dseg;
+ struct mlx5_wqe *restrict wqe;
+ unsigned int ds, nseg;
+
+ assert(NB_SEGS(loc->mbuf) > 1);
+ /*
+ * No inline at all, it means the CPU cycles saving
+ * is prioritized at configuration, we should not
+ * copy any packet data to WQE.
+ */
+ nseg = NB_SEGS(loc->mbuf);
+ ds = 2 + nseg;
+ if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
+ return MLX5_TXCMP_CODE_EXIT;
+ /* Check for maximal WQE size. */
+ if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
+ return MLX5_TXCMP_CODE_ERROR;
+ /*
+ * Some Tx offloads may cause an error if
+ * packet is not long enough, check against
+ * assumed minimal length.
+ */
+ if (rte_pktmbuf_pkt_len(loc->mbuf) <= MLX5_ESEG_MIN_INLINE_SIZE)
+ return MLX5_TXCMP_CODE_ERROR;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ txq->stats.obytes += rte_pktmbuf_pkt_len(loc->mbuf);
+ if (MLX5_TXOFF_CONFIG(VLAN) &&
+ loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
+ txq->stats.obytes += sizeof(struct rte_vlan_hdr);
+#endif
+ /*
+ * SEND WQE, one WQEBB:
+ * - Control Segment, SEND opcode
+ * - Ethernet Segment, optional VLAN, no inline
+ * - Data Segments, pointer only type
+ */
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx);
+ mlx5_tx_eseg_none(txq, loc, wqe, olx);
+ dseg = &wqe->dseg[0];
+ do {
+ if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
+ struct rte_mbuf *mbuf;
+
+ /*
+ * Zero length segment found, have to
+ * correct total size of WQE in segments.
+ * It is supposed to be rare occasion, so
+ * in normal case (no zero length segments)
+ * we avoid extra writing to the Control
+ * Segment.
+ */
+ --ds;
+ wqe->cseg.sq_ds -= RTE_BE32(1);
+ mbuf = loc->mbuf;
+ loc->mbuf = mbuf->next;
+ rte_pktmbuf_free_seg(mbuf);
+ if (--nseg == 0)
+ break;
+ } else {
+ mlx5_tx_dseg_ptr
+ (txq, loc, dseg,
+ rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
+ rte_pktmbuf_data_len(loc->mbuf), olx);
+ txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
+ --loc->elts_free;
+ if (--nseg == 0)
+ break;
+ ++dseg;
+ if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
+ dseg = (struct mlx5_wqe_dseg *)txq->wqes;
+ loc->mbuf = loc->mbuf->next;
+ }
+ } while (true);
+ txq->wqe_ci += (ds + 3) / 4;
+ loc->wqe_free -= (ds + 3) / 4;
+ return MLX5_TXCMP_CODE_MULTI;
+}
+
+/**
+ * Tx one packet function for multi-segment SEND. Supports all
+ * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
+ * sends one packet per WQE, with data inlining in
+ * Ethernet Segment and minimal Data Segments.
+ *
+ * This routine is responsible for storing processed mbuf
+ * into elts ring buffer and update elts_head.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
+ * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
+ * Local context variables partially updated.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_packet_multi_inline(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ struct mlx5_wqe *restrict wqe;
+ unsigned int ds, inlen, dlen, vlan = 0;
+
+ assert(MLX5_TXOFF_CONFIG(INLINE));
+ assert(NB_SEGS(loc->mbuf) > 1);
+ /*
+ * First calculate data length to be inlined
+ * to estimate the required space for WQE.
+ */
+ dlen = rte_pktmbuf_pkt_len(loc->mbuf);
+ if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
+ vlan = sizeof(struct rte_vlan_hdr);
+ inlen = dlen + vlan;
+ /* Check against minimal length. */
+ if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
+ return MLX5_TXCMP_CODE_ERROR;
+ assert(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
+ if (inlen > txq->inlen_send) {
+ struct rte_mbuf *mbuf;
+ unsigned int nxlen;
+ uintptr_t start;
+
+ /*
+ * Packet length exceeds the allowed inline
+ * data length, check whether the minimal
+ * inlining is required.
+ */
+ if (txq->inlen_mode) {
+ assert(txq->inlen_mode >= MLX5_ESEG_MIN_INLINE_SIZE);
+ assert(txq->inlen_mode <= txq->inlen_send);
+ inlen = txq->inlen_mode;
+ } else {
+ if (!vlan || txq->vlan_en) {
+ /*
+ * VLAN insertion will be done inside by HW.
+ * It is not utmost effective - VLAN flag is
+ * checked twice, but we should proceed the
+ * inlining length correctly and take into
+ * account the VLAN header being inserted.
+ */
+ return mlx5_tx_packet_multi_send
+ (txq, loc, olx);
+ }
+ inlen = MLX5_ESEG_MIN_INLINE_SIZE;
+ }
+ /*
+ * Now we know the minimal amount of data is requested
+ * to inline. Check whether we should inline the buffers
+ * from the chain beginning to eliminate some mbufs.
+ */
+ mbuf = loc->mbuf;
+ nxlen = rte_pktmbuf_data_len(mbuf);
+ if (unlikely(nxlen <= txq->inlen_send)) {
+ /* We can inline first mbuf at least. */
+ if (nxlen < inlen) {
+ unsigned int smlen;
+
+ /* Scan mbufs till inlen filled. */
+ do {
+ smlen = nxlen;
+ mbuf = NEXT(mbuf);
+ assert(mbuf);
+ nxlen = rte_pktmbuf_data_len(mbuf);
+ nxlen += smlen;
+ } while (unlikely(nxlen < inlen));
+ if (unlikely(nxlen > txq->inlen_send)) {
+ /* We cannot inline entire mbuf. */
+ smlen = inlen - smlen;
+ start = rte_pktmbuf_mtod_offset
+ (mbuf, uintptr_t, smlen);
+ goto do_align;
+ }
+ }
+ do {
+ inlen = nxlen;
+ mbuf = NEXT(mbuf);
+ /* There should be not end of packet. */
+ assert(mbuf);
+ nxlen = inlen + rte_pktmbuf_data_len(mbuf);
+ } while (unlikely(nxlen < txq->inlen_send));
+ }
+ start = rte_pktmbuf_mtod(mbuf, uintptr_t);
+ /*
+ * Check whether we can do inline to align start
+ * address of data buffer to cacheline.
+ */
+do_align:
+ start = (~start + 1) & (RTE_CACHE_LINE_SIZE - 1);
+ if (unlikely(start)) {
+ start += inlen;
+ if (start <= txq->inlen_send)
+ inlen = start;
+ }
+ }
+ /*
+ * Check whether there are enough free WQEBBs:
+ * - Control Segment
+ * - Ethernet Segment
+ * - First Segment of inlined Ethernet data
+ * - ... data continued ...
+ * - Data Segments of pointer/min inline type
+ *
+ * Estimate the number of Data Segments conservatively,
+ * supposing no any mbufs is being freed during inlining.
+ */
+ assert(inlen <= txq->inlen_send);
+ ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
+ MLX5_ESEG_MIN_INLINE_SIZE +
+ MLX5_WSEG_SIZE +
+ MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
+ if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
+ return MLX5_TXCMP_CODE_EXIT;
+ /* Check for maximal WQE size. */
+ if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
+ return MLX5_TXCMP_CODE_ERROR;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes/packets counters. */
+ txq->stats.obytes += dlen + vlan;
+#endif
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_SEND, olx);
+ ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 0, olx);
+ wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
+ txq->wqe_ci += (ds + 3) / 4;
+ loc->wqe_free -= (ds + 3) / 4;
+ return MLX5_TXCMP_CODE_MULTI;
+}
+
+/**
+ * Tx burst function for multi-segment packets. Supports all
+ * types of Tx offloads, uses MLX5_OPCODE_SEND/TSO to build WQEs,
+ * sends one packet per WQE. Function stops sending if it
+ * encounters the single-segment packet.
+ *
+ * This routine is responsible for storing processed mbuf
+ * into elts ring buffer and update elts_head.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
+ * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
+ * MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
+ * MLX5_TXCMP_CODE_TSO - TSO single-segment packet encountered.
+ * Local context variables updated.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_burst_mseg(struct mlx5_txq_data *restrict txq,
+ struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ assert(loc->elts_free && loc->wqe_free);
+ assert(pkts_n > loc->pkts_sent);
+ pkts += loc->pkts_sent + 1;
+ pkts_n -= loc->pkts_sent;
+ for (;;) {
+ enum mlx5_txcmp_code ret;
+
+ assert(NB_SEGS(loc->mbuf) > 1);
+ /*
+ * Estimate the number of free elts quickly but
+ * conservatively. Some segment may be fully inlined
+ * and freed, ignore this here - precise estimation
+ * is costly.
+ */
+ if (loc->elts_free < NB_SEGS(loc->mbuf))
+ return MLX5_TXCMP_CODE_EXIT;
+ if (MLX5_TXOFF_CONFIG(TSO) &&
+ unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) {
+ /* Proceed with multi-segment TSO. */
+ ret = mlx5_tx_packet_multi_tso(txq, loc, olx);
+ } else if (MLX5_TXOFF_CONFIG(INLINE)) {
+ /* Proceed with multi-segment SEND with inlining. */
+ ret = mlx5_tx_packet_multi_inline(txq, loc, olx);
+ } else {
+ /* Proceed with multi-segment SEND w/o inlining. */
+ ret = mlx5_tx_packet_multi_send(txq, loc, olx);
+ }
+ if (ret == MLX5_TXCMP_CODE_EXIT)
+ return MLX5_TXCMP_CODE_EXIT;
+ if (ret == MLX5_TXCMP_CODE_ERROR)
+ return MLX5_TXCMP_CODE_ERROR;
+ /* WQE is built, go to the next packet. */
+ ++loc->pkts_sent;
+ --pkts_n;
+ if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ loc->mbuf = *pkts++;
+ if (pkts_n > 1)
+ rte_prefetch0(*pkts);
+ if (likely(NB_SEGS(loc->mbuf) > 1))
+ continue;
+ /* Here ends the series of multi-segment packets. */
+ if (MLX5_TXOFF_CONFIG(TSO) &&
+ unlikely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
+ return MLX5_TXCMP_CODE_TSO;
+ return MLX5_TXCMP_CODE_SINGLE;
+ }
+ assert(false);
+}
+
+/**
+ * Tx burst function for single-segment packets with TSO.
+ * Supports all types of Tx offloads, except multi-packets.
+ * Uses MLX5_OPCODE_TSO to build WQEs, sends one packet per WQE.
+ * Function stops sending if it encounters the multi-segment
+ * packet or packet without TSO requested.
+ *
+ * The routine is responsible for storing processed mbuf
+ * into elts ring buffer and update elts_head if inline
+ * offloads is requested due to possible early freeing
+ * of the inlined mbufs (can not store pkts array in elts
+ * as a batch).
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
+ * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
+ * MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
+ * MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
+ * Local context variables updated.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_burst_tso(struct mlx5_txq_data *restrict txq,
+ struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ assert(loc->elts_free && loc->wqe_free);
+ assert(pkts_n > loc->pkts_sent);
+ pkts += loc->pkts_sent + 1;
+ pkts_n -= loc->pkts_sent;
+ for (;;) {
+ struct mlx5_wqe_dseg *restrict dseg;
+ struct mlx5_wqe *restrict wqe;
+ unsigned int ds, dlen, hlen, ntcp, vlan = 0;
+ uint8_t *dptr;
+
+ assert(NB_SEGS(loc->mbuf) == 1);
+ dlen = rte_pktmbuf_data_len(loc->mbuf);
+ if (MLX5_TXOFF_CONFIG(VLAN) &&
+ loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
+ vlan = sizeof(struct rte_vlan_hdr);
+ }
+ /*
+ * First calculate the WQE size to check
+ * whether we have enough space in ring buffer.
+ */
+ hlen = loc->mbuf->l2_len + vlan +
+ loc->mbuf->l3_len + loc->mbuf->l4_len;
+ if (unlikely((!hlen || !loc->mbuf->tso_segsz)))
+ return MLX5_TXCMP_CODE_ERROR;
+ if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
+ hlen += loc->mbuf->outer_l2_len +
+ loc->mbuf->outer_l3_len;
+ /* Segment must contain all TSO headers. */
+ if (unlikely(hlen > MLX5_MAX_TSO_HEADER ||
+ hlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
+ hlen > (dlen + vlan)))
+ return MLX5_TXCMP_CODE_ERROR;
+ /*
+ * Check whether there are enough free WQEBBs:
+ * - Control Segment
+ * - Ethernet Segment
+ * - First Segment of inlined Ethernet data
+ * - ... data continued ...
+ * - Finishing Data Segment of pointer type
+ */
+ ds = 4 + (hlen - MLX5_ESEG_MIN_INLINE_SIZE +
+ MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
+ if (loc->wqe_free < ((ds + 3) / 4))
+ return MLX5_TXCMP_CODE_EXIT;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes/packets counters. */
+ ntcp = (dlen + vlan - hlen +
+ loc->mbuf->tso_segsz - 1) /
+ loc->mbuf->tso_segsz;
+ /*
+ * One will be added for mbuf itself at the end
+ * of the mlx5_tx_burst from loc->pkts_sent field.
+ */
+ --ntcp;
+ txq->stats.opackets += ntcp;
+ txq->stats.obytes += dlen + vlan + ntcp * hlen;
+#endif
+ /*
+ * Build the TSO WQE:
+ * - Control Segment
+ * - Ethernet Segment with hlen bytes inlined
+ * - Data Segment of pointer type
+ */
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, ds,
+ MLX5_OPCODE_TSO, olx);
+ dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, hlen, 1, olx);
+ dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + hlen - vlan;
+ dlen -= hlen - vlan;
+ mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
+ /*
+ * WQE is built, update the loop parameters
+ * and go to the next packet.
+ */
+ txq->wqe_ci += (ds + 3) / 4;
+ loc->wqe_free -= (ds + 3) / 4;
+ if (MLX5_TXOFF_CONFIG(INLINE))
+ txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
+ --loc->elts_free;
+ ++loc->pkts_sent;
+ --pkts_n;
+ if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ loc->mbuf = *pkts++;
+ if (pkts_n > 1)
+ rte_prefetch0(*pkts);
+ if (MLX5_TXOFF_CONFIG(MULTI) &&
+ unlikely(NB_SEGS(loc->mbuf) > 1))
+ return MLX5_TXCMP_CODE_MULTI;
+ if (unlikely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
+ return MLX5_TXCMP_CODE_SINGLE;
+ /* Continue with the next TSO packet. */
+ }
+ assert(false);
+}
+
+/**
+ * Analyze the packet and select the best method to send.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ * @param newp
+ * The predefined flag whether do complete check for
+ * multi-segment packets and TSO.
+ *
+ * @return
+ * MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
+ * MLX5_TXCMP_CODE_TSO - TSO required, use TSO/LSO.
+ * MLX5_TXCMP_CODE_SINGLE - single-segment packet, use SEND.
+ * MLX5_TXCMP_CODE_EMPW - single-segment packet, use MPW.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_able_to_empw(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx,
+ bool newp)
+{
+ /* Check for multi-segment packet. */
+ if (newp &&
+ MLX5_TXOFF_CONFIG(MULTI) &&
+ unlikely(NB_SEGS(loc->mbuf) > 1))
+ return MLX5_TXCMP_CODE_MULTI;
+ /* Check for TSO packet. */
+ if (newp &&
+ MLX5_TXOFF_CONFIG(TSO) &&
+ unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
+ return MLX5_TXCMP_CODE_TSO;
+ /* Check if eMPW is enabled at all. */
+ if (!MLX5_TXOFF_CONFIG(EMPW))
+ return MLX5_TXCMP_CODE_SINGLE;
+ /* Check if eMPW can be engaged. */
+ if (MLX5_TXOFF_CONFIG(VLAN) &&
+ unlikely(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) &&
+ (!MLX5_TXOFF_CONFIG(INLINE) ||
+ unlikely((rte_pktmbuf_data_len(loc->mbuf) +
+ sizeof(struct rte_vlan_hdr)) > txq->inlen_empw))) {
+ /*
+ * eMPW does not support VLAN insertion offload,
+ * we have to inline the entire packet but
+ * packet is too long for inlining.
+ */
+ return MLX5_TXCMP_CODE_SINGLE;
+ }
+ return MLX5_TXCMP_CODE_EMPW;
+}
+
+/**
+ * Check the next packet attributes to match with the eMPW batch ones.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param es
+ * Pointer to Ethernet Segment of eMPW batch.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * true - packet match with eMPW batch attributes.
+ * false - no match, eMPW should be restarted.
+ */
+static __rte_always_inline bool
+mlx5_tx_match_empw(struct mlx5_txq_data *restrict txq __rte_unused,
+ struct mlx5_wqe_eseg *restrict es,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ uint8_t swp_flags = 0;
+
+ /* Compare the checksum flags, if any. */
+ if (MLX5_TXOFF_CONFIG(CSUM) &&
+ txq_ol_cksum_to_cs(loc->mbuf) != es->cs_flags)
+ return false;
+ /* Compare the Software Parser offsets and flags. */
+ if (MLX5_TXOFF_CONFIG(SWP) &&
+ (es->swp_offs != txq_mbuf_to_swp(loc, &swp_flags, olx) ||
+ es->swp_flags != swp_flags))
+ return false;
+ /* Fill metadata field if needed. */
+ if (MLX5_TXOFF_CONFIG(METADATA) &&
+ es->metadata != (loc->mbuf->ol_flags & PKT_TX_METADATA ?
+ loc->mbuf->tx_metadata : 0))
+ return false;
+ /* There must be no VLAN packets in eMPW loop. */
+ if (MLX5_TXOFF_CONFIG(VLAN))
+ assert(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT));
+ return true;
+}
+
+/*
+ * Update send loop variables and WQE for eMPW loop
+ * without data inlining. Number of Data Segments is
+ * equal to the number of sent packets.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param ds
+ * Number of packets/Data Segments/Packets.
+ * @param slen
+ * Accumulated statistics, bytes sent
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * true - packet match with eMPW batch attributes.
+ * false - no match, eMPW should be restarted.
+ */
+static __rte_always_inline void
+mlx5_tx_sdone_empw(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int ds,
+ unsigned int slen,
+ unsigned int olx __rte_unused)
+{
+ assert(!MLX5_TXOFF_CONFIG(INLINE));
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ txq->stats.obytes += slen;
+#else
+ (void)slen;
+#endif
+ loc->elts_free -= ds;
+ loc->pkts_sent += ds;
+ ds += 2;
+ loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
+ txq->wqe_ci += (ds + 3) / 4;
+ loc->wqe_free -= (ds + 3) / 4;
+}
+
+/*
+ * Update send loop variables and WQE for eMPW loop
+ * with data inlining. Gets the size of pushed descriptors
+ * and data to the WQE.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param len
+ * Total size of descriptor/data in bytes.
+ * @param slen
+ * Accumulated statistics, data bytes sent.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * true - packet match with eMPW batch attributes.
+ * false - no match, eMPW should be restarted.
+ */
+static __rte_always_inline void
+mlx5_tx_idone_empw(struct mlx5_txq_data *restrict txq,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int len,
+ unsigned int slen,
+ unsigned int olx __rte_unused)
+{
+ assert(MLX5_TXOFF_CONFIG(INLINE));
+ assert((len % MLX5_WSEG_SIZE) == 0);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ txq->stats.obytes += slen;
+#else
+ (void)slen;
+#endif
+ len = len / MLX5_WSEG_SIZE + 2;
+ loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | len);
+ txq->wqe_ci += (len + 3) / 4;
+ loc->wqe_free -= (len + 3) / 4;
+}
+
+/**
+ * The set of Tx burst functions for single-segment packets
+ * without TSO and with Multi-Packet Writing feature support.
+ * Supports all types of Tx offloads, except multi-packets
+ * and TSO.
+ *
+ * Uses MLX5_OPCODE_EMPW to build WQEs if possible and sends
+ * as many packet per WQE as it can. If eMPW is not configured
+ * or packet can not be sent with eMPW (VLAN insertion) the
+ * ordinary SEND opcode is used and only one packet placed
+ * in WQE.
+ *
+ * Functions stop sending if it encounters the multi-segment
+ * packet or packet with TSO requested.
+ *
+ * The routines are responsible for storing processed mbuf
+ * into elts ring buffer and update elts_head if inlining
+ * offload is requested. Otherwise the copying mbufs to elts
+ * can be postponed and completed at the end of burst routine.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ * @param loc
+ * Pointer to burst routine local context.
+ * @param olx
+ * Configured Tx offloads mask. It is fully defined at
+ * compile time and may be used for optimization.
+ *
+ * @return
+ * MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
+ * MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
+ * MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
+ * MLX5_TXCMP_CODE_TSO - TSO packet encountered.
+ * MLX5_TXCMP_CODE_SINGLE - used inside functions set.
+ * MLX5_TXCMP_CODE_EMPW - used inside functions set.
+ *
+ * Local context variables updated.
+ *
+ *
+ * The routine sends packets with MLX5_OPCODE_EMPW
+ * without inlining, this is dedicated optimized branch.
+ * No VLAN insertion is supported.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_burst_empw_simple(struct mlx5_txq_data *restrict txq,
+ struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ /*
+ * Subroutine is the part of mlx5_tx_burst_single()
+ * and sends single-segment packet with eMPW opcode
+ * without data inlining.
+ */
+ assert(!MLX5_TXOFF_CONFIG(INLINE));
+ assert(MLX5_TXOFF_CONFIG(EMPW));
+ assert(loc->elts_free && loc->wqe_free);
+ assert(pkts_n > loc->pkts_sent);
+ static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
+ pkts += loc->pkts_sent + 1;
+ pkts_n -= loc->pkts_sent;
+ for (;;) {
+ struct mlx5_wqe_dseg *restrict dseg;
+ struct mlx5_wqe_eseg *restrict eseg;
+ enum mlx5_txcmp_code ret;
+ unsigned int part, loop;
+ unsigned int slen = 0;
+
+next_empw:
+ part = RTE_MIN(pkts_n, MLX5_EMPW_MAX_PACKETS);
+ if (unlikely(loc->elts_free < part)) {
+ /* We have no enough elts to save all mbufs. */
+ if (unlikely(loc->elts_free < MLX5_EMPW_MIN_PACKETS))
+ return MLX5_TXCMP_CODE_EXIT;
+ /* But we still able to send at least minimal eMPW. */
+ part = loc->elts_free;
+ }
+ /* Check whether we have enough WQEs */
+ if (unlikely(loc->wqe_free < ((2 + part + 3) / 4))) {
+ if (unlikely(loc->wqe_free <
+ ((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
+ return MLX5_TXCMP_CODE_EXIT;
+ part = (loc->wqe_free * 4) - 2;
+ }
+ if (likely(part > 1))
+ rte_prefetch0(*pkts);
+ loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ /*
+ * Build eMPW title WQEBB:
+ * - Control Segment, eMPW opcode
+ * - Ethernet Segment, no inline
+ */
+ mlx5_tx_cseg_init(txq, loc, loc->wqe_last, part + 2,
+ MLX5_OPCODE_ENHANCED_MPSW, olx);
+ mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
+ olx & ~MLX5_TXOFF_CONFIG_VLAN);
+ eseg = &loc->wqe_last->eseg;
+ dseg = &loc->wqe_last->dseg[0];
+ loop = part;
+ for (;;) {
+ uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ slen += dlen;
+#endif
+ mlx5_tx_dseg_ptr
+ (txq, loc, dseg,
+ rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
+ dlen, olx);
+ if (unlikely(--loop == 0))
+ break;
+ loc->mbuf = *pkts++;
+ if (likely(loop > 1))
+ rte_prefetch0(*pkts);
+ ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
+ /*
+ * Unroll the completion code to avoid
+ * returning variable value - it results in
+ * unoptimized sequent checking in caller.
+ */
+ if (ret == MLX5_TXCMP_CODE_MULTI) {
+ part -= loop;
+ mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ return MLX5_TXCMP_CODE_MULTI;
+ }
+ if (ret == MLX5_TXCMP_CODE_TSO) {
+ part -= loop;
+ mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ return MLX5_TXCMP_CODE_TSO;
+ }
+ if (ret == MLX5_TXCMP_CODE_SINGLE) {
+ part -= loop;
+ mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ return MLX5_TXCMP_CODE_SINGLE;
+ }
+ if (ret != MLX5_TXCMP_CODE_EMPW) {
+ assert(false);
+ part -= loop;
+ mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
+ return MLX5_TXCMP_CODE_ERROR;
+ }
+ /*
+ * Check whether packet parameters coincide
+ * within assumed eMPW batch:
+ * - check sum settings
+ * - metadata value
+ * - software parser settings
+ */
+ if (!mlx5_tx_match_empw(txq, eseg, loc, olx)) {
+ assert(loop);
+ part -= loop;
+ mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ goto next_empw;
+ }
+ /* Packet attributes match, continue the same eMPW. */
+ ++dseg;
+ if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
+ dseg = (struct mlx5_wqe_dseg *)txq->wqes;
+ }
+ /* eMPW is built successfully, update loop parameters. */
+ assert(!loop);
+ assert(pkts_n >= part);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ txq->stats.obytes += slen;
+#endif
+ loc->elts_free -= part;
+ loc->pkts_sent += part;
+ txq->wqe_ci += (2 + part + 3) / 4;
+ loc->wqe_free -= (2 + part + 3) / 4;
+ pkts_n -= part;
+ if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ loc->mbuf = *pkts++;
+ ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
+ if (unlikely(ret != MLX5_TXCMP_CODE_EMPW))
+ return ret;
+ /* Continue sending eMPW batches. */
+ }
+ assert(false);
+}
+
+/**
+ * The routine sends packets with MLX5_OPCODE_EMPW
+ * with inlining, optionally supports VLAN insertion.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_burst_empw_inline(struct mlx5_txq_data *restrict txq,
+ struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ /*
+ * Subroutine is the part of mlx5_tx_burst_single()
+ * and sends single-segment packet with eMPW opcode
+ * with data inlining.
+ */
+ assert(MLX5_TXOFF_CONFIG(INLINE));
+ assert(MLX5_TXOFF_CONFIG(EMPW));
+ assert(loc->elts_free && loc->wqe_free);
+ assert(pkts_n > loc->pkts_sent);
+ static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
+ pkts += loc->pkts_sent + 1;
+ pkts_n -= loc->pkts_sent;
+ for (;;) {
+ struct mlx5_wqe_dseg *restrict dseg;
+ struct mlx5_wqe_eseg *restrict eseg;
+ enum mlx5_txcmp_code ret;
+ unsigned int room, part;
+ unsigned int slen = 0;
+
+next_empw:
+ /* Check whether we have minimal amount WQEs */
+ if (unlikely(loc->wqe_free <
+ ((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
+ return MLX5_TXCMP_CODE_EXIT;
+ if (likely(pkts_n > 1))
+ rte_prefetch0(*pkts);
+ loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ /*
+ * Build eMPW title WQEBB:
+ * - Control Segment, eMPW opcode, zero DS
+ * - Ethernet Segment, no inline
+ */
+ mlx5_tx_cseg_init(txq, loc, loc->wqe_last, 0,
+ MLX5_OPCODE_ENHANCED_MPSW, olx);
+ mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
+ olx & ~MLX5_TXOFF_CONFIG_VLAN);
+ eseg = &loc->wqe_last->eseg;
+ dseg = &loc->wqe_last->dseg[0];
+ room = RTE_MIN(MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE,
+ loc->wqe_free) * MLX5_WQE_SIZE -
+ MLX5_WQE_CSEG_SIZE -
+ MLX5_WQE_ESEG_SIZE;
+ /* Build WQE till we have space, packets and resources. */
+ part = room;
+ for (;;) {
+ uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
+ uint8_t *dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
+ unsigned int tlen;
+
+ assert(room >= MLX5_WQE_DSEG_SIZE);
+ assert((room % MLX5_WQE_DSEG_SIZE) == 0);
+ assert((uintptr_t)dseg < (uintptr_t)txq->wqes_end);
+ /*
+ * Some Tx offloads may cause an error if
+ * packet is not long enough, check against
+ * assumed minimal length.
+ */
+ if (unlikely(dlen <= MLX5_ESEG_MIN_INLINE_SIZE)) {
+ part -= room;
+ if (unlikely(!part))
+ return MLX5_TXCMP_CODE_ERROR;
+ /*
+ * We have some successfully built
+ * packet Data Segments to send.
+ */
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ return MLX5_TXCMP_CODE_ERROR;
+ }
+ /* Inline or not inline - that's the Question. */
+ if (dlen > txq->inlen_empw)
+ goto pointer_empw;
+ /* Inline entire packet, optional VLAN insertion. */
+ tlen = sizeof(dseg->bcount) + dlen;
+ if (MLX5_TXOFF_CONFIG(VLAN) &&
+ loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
+ /*
+ * The packet length must be checked in
+ * mlx5_tx_able_to_empw() and packet
+ * fits into inline length guaranteed.
+ */
+ assert((dlen + sizeof(struct rte_vlan_hdr)) <=
+ txq->inlen_empw);
+ tlen += sizeof(struct rte_vlan_hdr);
+ if (room < tlen)
+ break;
+ dseg = mlx5_tx_dseg_vlan(txq, loc, dseg,
+ dptr, dlen, olx);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ slen += sizeof(struct rte_vlan_hdr);
+#endif
+ } else {
+ if (room < tlen)
+ break;
+ dseg = mlx5_tx_dseg_empw(txq, loc, dseg,
+ dptr, dlen, olx);
+ }
+ tlen = RTE_ALIGN(tlen, MLX5_WSEG_SIZE);
+ assert(room >= tlen);
+ room -= tlen;
+ /*
+ * Packet data are completely inlined,
+ * free the packet immediately.
+ */
+ rte_pktmbuf_free_seg(loc->mbuf);
+ goto next_mbuf;
+pointer_empw:
+ /*
+ * Not inlinable VLAN packets are
+ * proceeded outside of this routine.
+ */
+ assert(room >= MLX5_WQE_DSEG_SIZE);
+ if (MLX5_TXOFF_CONFIG(VLAN))
+ assert(!(loc->mbuf->ol_flags &
+ PKT_TX_VLAN_PKT));
+ mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
+ /* We have to store mbuf in elts.*/
+ txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
+ room -= MLX5_WQE_DSEG_SIZE;
+ /* Ring buffer wraparound is checked at the loop end.*/
+ ++dseg;
+next_mbuf:
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ slen += dlen;
+#endif
+ loc->pkts_sent++;
+ loc->elts_free--;
+ pkts_n--;
+ if (unlikely(!pkts_n || !loc->elts_free)) {
+ /*
+ * We have no resources/packets to
+ * continue build descriptors.
+ */
+ part -= room;
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ return MLX5_TXCMP_CODE_EXIT;
+ }
+ /* Check if we have minimal room left. */
+ if (room < MLX5_WQE_DSEG_SIZE) {
+ part -= room;
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ goto next_empw;
+ }
+ loc->mbuf = *pkts++;
+ if (likely(pkts_n > 1))
+ rte_prefetch0(*pkts);
+ ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
+ /*
+ * Unroll the completion code to avoid
+ * returning variable value - it results in
+ * unoptimized sequent checking in caller.
+ */
+ if (ret == MLX5_TXCMP_CODE_MULTI) {
+ part -= room;
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ return MLX5_TXCMP_CODE_MULTI;
+ }
+ if (ret == MLX5_TXCMP_CODE_TSO) {
+ part -= room;
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ return MLX5_TXCMP_CODE_TSO;
+ }
+ if (ret == MLX5_TXCMP_CODE_SINGLE) {
+ part -= room;
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ return MLX5_TXCMP_CODE_SINGLE;
+ }
+ if (ret != MLX5_TXCMP_CODE_EMPW) {
+ assert(false);
+ part -= room;
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ return MLX5_TXCMP_CODE_ERROR;
+ }
+ /*
+ * Check whether packet parameters coincide
+ * within assumed eMPW batch:
+ * - check sum settings
+ * - metadata value
+ * - software parser settings
+ */
+ if (!mlx5_tx_match_empw(txq, eseg, loc, olx))
+ break;
+ /* Packet attributes match, continue the same eMPW. */
+ if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
+ dseg = (struct mlx5_wqe_dseg *)txq->wqes;
+ }
+ /*
+ * We get here to close an existing eMPW
+ * session and start the new one.
+ */
+ assert(pkts_n);
+ part -= room;
+ if (unlikely(!part))
+ return MLX5_TXCMP_CODE_EXIT;
+ mlx5_tx_idone_empw(txq, loc, part, slen, olx);
+ if (unlikely(!loc->elts_free ||
+ !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ goto next_empw;
+ }
+ assert(false);
+}
+
+/**
+ * The routine sends packets with ordinary MLX5_OPCODE_SEND.
+ * Data inlining and VLAN insertion are supported.
+ */
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_burst_single_send(struct mlx5_txq_data *restrict txq,
+ struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ /*
+ * Subroutine is the part of mlx5_tx_burst_single()
+ * and sends single-segment packet with SEND opcode.
+ */
+ assert(loc->elts_free && loc->wqe_free);
+ assert(pkts_n > loc->pkts_sent);
+ pkts += loc->pkts_sent + 1;
+ pkts_n -= loc->pkts_sent;
+ for (;;) {
+ struct mlx5_wqe *restrict wqe;
+ enum mlx5_txcmp_code ret;
+
+ assert(NB_SEGS(loc->mbuf) == 1);
+ if (MLX5_TXOFF_CONFIG(INLINE)) {
+ unsigned int inlen, vlan = 0;
+
+ inlen = rte_pktmbuf_data_len(loc->mbuf);
+ if (MLX5_TXOFF_CONFIG(VLAN) &&
+ loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
+ vlan = sizeof(struct rte_vlan_hdr);
+ inlen += vlan;
+ static_assert((sizeof(struct rte_vlan_hdr) +
+ sizeof(struct rte_ether_hdr)) ==
+ MLX5_ESEG_MIN_INLINE_SIZE,
+ "invalid min inline data size");
+ }
+ /*
+ * If inlining is enabled at configuration time
+ * the limit must be not less than minimal size.
+ * Otherwise we would do extra check for data
+ * size to avoid crashes due to length overflow.
+ */
+ assert(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
+ if (inlen <= txq->inlen_send) {
+ unsigned int seg_n, wqe_n;
+
+ rte_prefetch0(rte_pktmbuf_mtod
+ (loc->mbuf, uint8_t *));
+ /* Check against minimal length. */
+ if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
+ return MLX5_TXCMP_CODE_ERROR;
+ /*
+ * Completely inlined packet data WQE:
+ * - Control Segment, SEND opcode
+ * - Ethernet Segment, no VLAN insertion
+ * - Data inlined, VLAN optionally inserted
+ * - Alignment to MLX5_WSEG_SIZE
+ * Have to estimate amount of WQEBBs
+ */
+ seg_n = (inlen + 3 * MLX5_WSEG_SIZE -
+ MLX5_ESEG_MIN_INLINE_SIZE +
+ MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
+ /* Check if there are enough WQEBBs. */
+ wqe_n = (seg_n + 3) / 4;
+ if (wqe_n > loc->wqe_free)
+ return MLX5_TXCMP_CODE_EXIT;
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, seg_n,
+ MLX5_OPCODE_SEND, olx);
+ mlx5_tx_eseg_data(txq, loc, wqe,
+ vlan, inlen, 0, olx);
+ txq->wqe_ci += wqe_n;
+ loc->wqe_free -= wqe_n;
+ /*
+ * Packet data are completely inlined,
+ * free the packet immediately.
+ */
+ rte_pktmbuf_free_seg(loc->mbuf);
+ } else if (!MLX5_TXOFF_CONFIG(EMPW) &&
+ txq->inlen_mode) {
+ /*
+ * If minimal inlining is requested the eMPW
+ * feature should be disabled due to data is
+ * inlined into Ethernet Segment, which can
+ * not contain inlined data for eMPW due to
+ * segment shared for all packets.
+ */
+ struct mlx5_wqe_dseg *restrict dseg;
+ unsigned int ds;
+ uint8_t *dptr;
+
+ /*
+ * The inline-mode settings require
+ * to inline the specified amount of
+ * data bytes to the Ethernet Segment.
+ * We should check the free space in
+ * WQE ring buffer to inline partially.
+ */
+ assert(txq->inlen_send >= txq->inlen_mode);
+ assert(inlen > txq->inlen_mode);
+ assert(txq->inlen_mode >=
+ MLX5_ESEG_MIN_INLINE_SIZE);
+ /*
+ * Check whether there are enough free WQEBBs:
+ * - Control Segment
+ * - Ethernet Segment
+ * - First Segment of inlined Ethernet data
+ * - ... data continued ...
+ * - Finishing Data Segment of pointer type
+ */
+ ds = (MLX5_WQE_CSEG_SIZE +
+ MLX5_WQE_ESEG_SIZE +
+ MLX5_WQE_DSEG_SIZE +
+ txq->inlen_mode -
+ MLX5_ESEG_MIN_INLINE_SIZE +
+ MLX5_WQE_DSEG_SIZE +
+ MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
+ if (loc->wqe_free < ((ds + 3) / 4))
+ return MLX5_TXCMP_CODE_EXIT;
+ /*
+ * Build the ordinary SEND WQE:
+ * - Control Segment
+ * - Ethernet Segment, inline inlen_mode bytes
+ * - Data Segment of pointer type
+ */
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, ds,
+ MLX5_OPCODE_SEND, olx);
+ dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan,
+ txq->inlen_mode,
+ 0, olx);
+ dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
+ txq->inlen_mode - vlan;
+ inlen -= txq->inlen_mode;
+ mlx5_tx_dseg_ptr(txq, loc, dseg,
+ dptr, inlen, olx);
+ /*
+ * WQE is built, update the loop parameters
+ * and got to the next packet.
+ */
+ txq->wqe_ci += (ds + 3) / 4;
+ loc->wqe_free -= (ds + 3) / 4;
+ /* We have to store mbuf in elts.*/
+ assert(MLX5_TXOFF_CONFIG(INLINE));
+ txq->elts[txq->elts_head++ & txq->elts_m] =
+ loc->mbuf;
+ --loc->elts_free;
+ } else {
+ uint8_t *dptr;
+ unsigned int dlen;
+
+ /*
+ * Partially inlined packet data WQE, we have
+ * some space in title WQEBB, we can fill it
+ * with some packet data. It takes one WQEBB,
+ * it is available, no extra space check:
+ * - Control Segment, SEND opcode
+ * - Ethernet Segment, no VLAN insertion
+ * - MLX5_ESEG_MIN_INLINE_SIZE bytes of Data
+ * - Data Segment, pointer type
+ *
+ * We also get here if VLAN insertion is not
+ * supported by HW, the inline is enabled.
+ */
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, 4,
+ MLX5_OPCODE_SEND, olx);
+ mlx5_tx_eseg_dmin(txq, loc, wqe, vlan, olx);
+ dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
+ MLX5_ESEG_MIN_INLINE_SIZE - vlan;
+ /*
+ * The length check is performed above, by
+ * comparing with txq->inlen_send. We should
+ * not get overflow here.
+ */
+ assert(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
+ dlen = inlen - MLX5_ESEG_MIN_INLINE_SIZE;
+ mlx5_tx_dseg_ptr(txq, loc, &wqe->dseg[1],
+ dptr, dlen, olx);
+ ++txq->wqe_ci;
+ --loc->wqe_free;
+ /* We have to store mbuf in elts.*/
+ assert(MLX5_TXOFF_CONFIG(INLINE));
+ txq->elts[txq->elts_head++ & txq->elts_m] =
+ loc->mbuf;
+ --loc->elts_free;
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ txq->stats.obytes += vlan +
+ rte_pktmbuf_data_len(loc->mbuf);
+#endif
+ } else {
+ /*
+ * No inline at all, it means the CPU cycles saving
+ * is prioritized at configuration, we should not
+ * copy any packet data to WQE.
+ *
+ * SEND WQE, one WQEBB:
+ * - Control Segment, SEND opcode
+ * - Ethernet Segment, optional VLAN, no inline
+ * - Data Segment, pointer type
+ */
+ wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
+ loc->wqe_last = wqe;
+ mlx5_tx_cseg_init(txq, loc, wqe, 3,
+ MLX5_OPCODE_SEND, olx);
+ mlx5_tx_eseg_none(txq, loc, wqe, olx);
+ mlx5_tx_dseg_ptr
+ (txq, loc, &wqe->dseg[0],
+ rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
+ rte_pktmbuf_data_len(loc->mbuf), olx);
+ ++txq->wqe_ci;
+ --loc->wqe_free;
+ /*
+ * We should not store mbuf pointer in elts
+ * if no inlining is configured, this is done
+ * by calling routine in a batch copy.
+ */
+ assert(!MLX5_TXOFF_CONFIG(INLINE));
+ --loc->elts_free;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Update sent data bytes counter. */
+ txq->stats.obytes += rte_pktmbuf_data_len(loc->mbuf);
+ if (MLX5_TXOFF_CONFIG(VLAN) &&
+ loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
+ txq->stats.obytes +=
+ sizeof(struct rte_vlan_hdr);
+#endif
+ }
+ ++loc->pkts_sent;
+ --pkts_n;
+ if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
+ return MLX5_TXCMP_CODE_EXIT;
+ loc->mbuf = *pkts++;
+ if (pkts_n > 1)
+ rte_prefetch0(*pkts);
+ ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
+ if (unlikely(ret != MLX5_TXCMP_CODE_SINGLE))
+ return ret;
+ }
+ assert(false);
+}
+
+static __rte_always_inline enum mlx5_txcmp_code
+mlx5_tx_burst_single(struct mlx5_txq_data *restrict txq,
+ struct rte_mbuf **restrict pkts,
+ unsigned int pkts_n,
+ struct mlx5_txq_local *restrict loc,
+ unsigned int olx)
+{
+ enum mlx5_txcmp_code ret;
+
+ ret = mlx5_tx_able_to_empw(txq, loc, olx, false);
+ if (ret == MLX5_TXCMP_CODE_SINGLE)
+ goto ordinary_send;
+ assert(ret == MLX5_TXCMP_CODE_EMPW);
+ for (;;) {
+ /* Optimize for inline/no inline eMPW send. */
+ ret = (MLX5_TXOFF_CONFIG(INLINE)) ?
+ mlx5_tx_burst_empw_inline
+ (txq, pkts, pkts_n, loc, olx) :
+ mlx5_tx_burst_empw_simple
+ (txq, pkts, pkts_n, loc, olx);
+ if (ret != MLX5_TXCMP_CODE_SINGLE)
+ return ret;
+ /* The resources to send one packet should remain. */
+ assert(loc->elts_free && loc->wqe_free);
+ordinary_send:
+ ret = mlx5_tx_burst_single_send(txq, pkts, pkts_n, loc, olx);
+ assert(ret != MLX5_TXCMP_CODE_SINGLE);
+ if (ret != MLX5_TXCMP_CODE_EMPW)
+ return ret;
+ /* The resources to send one packet should remain. */
+ assert(loc->elts_free && loc->wqe_free);
+ }
}
/**
@@ -1607,11 +4284,238 @@ mlx5_tx_burst_tmpl(struct mlx5_txq_data *restrict txq,
uint16_t pkts_n,
unsigned int olx)
{
- (void)txq;
- (void)pkts;
- (void)pkts_n;
- (void)olx;
- return 0;
+ struct mlx5_txq_local loc;
+ enum mlx5_txcmp_code ret;
+ unsigned int part;
+
+ assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
+ assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
+ /*
+ * Check if there are some CQEs, if any:
+ * - process an encountered errors
+ * - process the completed WQEs
+ * - free related mbufs
+ * - doorbell the NIC about processed CQEs
+ */
+ if (unlikely(!pkts_n))
+ return 0;
+ rte_prefetch0(*pkts);
+ mlx5_tx_handle_completion(txq, olx);
+ /*
+ * Calculate the number of available resources - elts and WQEs.
+ * There are two possible different scenarios:
+ * - no data inlining into WQEs, one WQEBB may contains upto
+ * four packets, in this case elts become scarce resource
+ * - data inlining into WQEs, one packet may require multiple
+ * WQEBBs, the WQEs become the limiting factor.
+ */
+ assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
+ loc.elts_free = txq->elts_s -
+ (uint16_t)(txq->elts_head - txq->elts_tail);
+ assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
+ loc.wqe_free = txq->wqe_s -
+ (uint16_t)(txq->wqe_ci - txq->wqe_pi);
+ if (unlikely(!loc.elts_free || !loc.wqe_free))
+ return 0;
+ loc.pkts_sent = 0;
+ loc.pkts_copy = 0;
+ loc.wqe_last = NULL;
+ for (;;) {
+ /*
+ * Fetch the packet from array. Usually this is
+ * the first packet in series of multi/single
+ * segment packets.
+ */
+ loc.mbuf = *(pkts + loc.pkts_sent);
+ /* Dedicated branch for multi-segment packets. */
+ if (MLX5_TXOFF_CONFIG(MULTI) &&
+ unlikely(NB_SEGS(loc.mbuf) > 1)) {
+ /*
+ * Multi-segment packet encountered.
+ * Hardware is able to process it only
+ * with SEND/TSO opcodes, one packet
+ * per WQE, do it in dedicated routine.
+ */
+enter_send_multi:
+ assert(loc.pkts_sent >= loc.pkts_copy);
+ part = loc.pkts_sent - loc.pkts_copy;
+ if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
+ /*
+ * There are some single-segment mbufs not
+ * stored in elts. The mbufs must be in the
+ * same order as WQEs, so we must copy the
+ * mbufs to elts here, before the coming
+ * multi-segment packet mbufs is appended.
+ */
+ mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy,
+ part, olx);
+ loc.pkts_copy = loc.pkts_sent;
+ }
+ assert(pkts_n > loc.pkts_sent);
+ ret = mlx5_tx_burst_mseg(txq, pkts, pkts_n, &loc, olx);
+ if (!MLX5_TXOFF_CONFIG(INLINE))
+ loc.pkts_copy = loc.pkts_sent;
+ /*
+ * These returned code checks are supposed
+ * to be optimized out due to routine inlining.
+ */
+ if (ret == MLX5_TXCMP_CODE_EXIT) {
+ /*
+ * The routine returns this code when
+ * all packets are sent or there is no
+ * enough resources to complete request.
+ */
+ break;
+ }
+ if (ret == MLX5_TXCMP_CODE_ERROR) {
+ /*
+ * The routine returns this code when
+ * some error in the incoming packets
+ * format occurred.
+ */
+ txq->stats.oerrors++;
+ break;
+ }
+ if (ret == MLX5_TXCMP_CODE_SINGLE) {
+ /*
+ * The single-segment packet was encountered
+ * in the array, try to send it with the
+ * best optimized way, possible engaging eMPW.
+ */
+ goto enter_send_single;
+ }
+ if (MLX5_TXOFF_CONFIG(TSO) &&
+ ret == MLX5_TXCMP_CODE_TSO) {
+ /*
+ * The single-segment TSO packet was
+ * encountered in the array.
+ */
+ goto enter_send_tso;
+ }
+ /* We must not get here. Something is going wrong. */
+ assert(false);
+ txq->stats.oerrors++;
+ break;
+ }
+ /* Dedicated branch for single-segment TSO packets. */
+ if (MLX5_TXOFF_CONFIG(TSO) &&
+ unlikely(loc.mbuf->ol_flags & PKT_TX_TCP_SEG)) {
+ /*
+ * TSO might require special way for inlining
+ * (dedicated parameters) and is sent with
+ * MLX5_OPCODE_TSO opcode only, provide this
+ * in dedicated branch.
+ */
+enter_send_tso:
+ assert(NB_SEGS(loc.mbuf) == 1);
+ assert(pkts_n > loc.pkts_sent);
+ ret = mlx5_tx_burst_tso(txq, pkts, pkts_n, &loc, olx);
+ /*
+ * These returned code checks are supposed
+ * to be optimized out due to routine inlining.
+ */
+ if (ret == MLX5_TXCMP_CODE_EXIT)
+ break;
+ if (ret == MLX5_TXCMP_CODE_ERROR) {
+ txq->stats.oerrors++;
+ break;
+ }
+ if (ret == MLX5_TXCMP_CODE_SINGLE)
+ goto enter_send_single;
+ if (MLX5_TXOFF_CONFIG(MULTI) &&
+ ret == MLX5_TXCMP_CODE_MULTI) {
+ /*
+ * The multi-segment packet was
+ * encountered in the array.
+ */
+ goto enter_send_multi;
+ }
+ /* We must not get here. Something is going wrong. */
+ assert(false);
+ txq->stats.oerrors++;
+ break;
+ }
+ /*
+ * The dedicated branch for the single-segment packets
+ * without TSO. Often these ones can be sent using
+ * MLX5_OPCODE_EMPW with multiple packets in one WQE.
+ * The routine builds the WQEs till it encounters
+ * the TSO or multi-segment packet (in case if these
+ * offloads are requested at SQ configuration time).
+ */
+enter_send_single:
+ assert(pkts_n > loc.pkts_sent);
+ ret = mlx5_tx_burst_single(txq, pkts, pkts_n, &loc, olx);
+ /*
+ * These returned code checks are supposed
+ * to be optimized out due to routine inlining.
+ */
+ if (ret == MLX5_TXCMP_CODE_EXIT)
+ break;
+ if (ret == MLX5_TXCMP_CODE_ERROR) {
+ txq->stats.oerrors++;
+ break;
+ }
+ if (MLX5_TXOFF_CONFIG(MULTI) &&
+ ret == MLX5_TXCMP_CODE_MULTI) {
+ /*
+ * The multi-segment packet was
+ * encountered in the array.
+ */
+ goto enter_send_multi;
+ }
+ if (MLX5_TXOFF_CONFIG(TSO) &&
+ ret == MLX5_TXCMP_CODE_TSO) {
+ /*
+ * The single-segment TSO packet was
+ * encountered in the array.
+ */
+ goto enter_send_tso;
+ }
+ /* We must not get here. Something is going wrong. */
+ assert(false);
+ txq->stats.oerrors++;
+ break;
+ }
+ /*
+ * Main Tx loop is completed, do the rest:
+ * - set completion request if thresholds are reached
+ * - doorbell the hardware
+ * - copy the rest of mbufs to elts (if any)
+ */
+ assert(MLX5_TXOFF_CONFIG(INLINE) || loc.pkts_sent >= loc.pkts_copy);
+ /* Take a shortcut if nothing is sent. */
+ if (unlikely(loc.pkts_sent == 0))
+ return 0;
+ /* Not all of the mbufs may be stored into elts yet. */
+ part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc.pkts_sent - loc.pkts_copy;
+ mlx5_tx_request_completion(txq, part, &loc, olx);
+ /*
+ * Ring QP doorbell immediately after WQE building completion
+ * to improve latencies. The pure software related data treatment
+ * can be completed after doorbell. Tx CQEs for this SQ are
+ * processed in this thread only by the polling.
+ */
+ mlx5_tx_dbrec_cond_wmb(txq, loc.wqe_last, 0);
+ if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
+ /*
+ * There are some single-segment mbufs not stored in elts.
+ * It can be only if last packet was single-segment.
+ * The copying is gathered into one place due to it is
+ * a good opportunity to optimize that with SIMD.
+ * Unfortunately if inlining is enabled the gaps in
+ * pointer array may happen due to early freeing of the
+ * inlined mbufs.
+ */
+ mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx);
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Increment sent packets counter. */
+ txq->stats.opackets += loc.pkts_sent;
+#endif
+ assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
+ assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
+ return loc.pkts_sent;
}
/* Generate routines with Enhanced Multi-Packet Write support. */
diff --git a/drivers/net/mlx5/mlx5_rxtx.h b/drivers/net/mlx5/mlx5_rxtx.h
index 03ddd9e..bc8a61a 100644
--- a/drivers/net/mlx5/mlx5_rxtx.h
+++ b/drivers/net/mlx5/mlx5_rxtx.h
@@ -355,8 +355,9 @@ extern uint8_t mlx5_swp_types_table[];
void mlx5_set_ptype_table(void);
void mlx5_set_cksum_table(void);
void mlx5_set_swp_types_table(void);
-__rte_noinline uint16_t mlx5_tx_error_cqe_handle(struct mlx5_txq_data *txq,
- volatile struct mlx5_err_cqe *err_cqe);
+__rte_noinline uint16_t mlx5_tx_error_cqe_handle
+ (struct mlx5_txq_data *restrict txq,
+ volatile struct mlx5_err_cqe *err_cqe);
uint16_t mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n);
void mlx5_rxq_initialize(struct mlx5_rxq_data *rxq);
__rte_noinline int mlx5_rx_err_handle(struct mlx5_rxq_data *rxq,