summaryrefslogtreecommitdiff
path: root/lib/librte_flow_classify/rte_flow_classify.c
blob: 591d98e258355f0e10b40b71ebbcd706d6b8ca60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <rte_compat.h>
#include <rte_flow_classify.h>
#include "rte_flow_classify_parse.h"
#include <rte_flow_driver.h>
#include <rte_table_acl.h>
#include <stdbool.h>

int librte_flow_classify_logtype;

static uint32_t unique_id = 1;

enum rte_flow_classify_table_type table_type
	= RTE_FLOW_CLASSIFY_TABLE_TYPE_NONE;

struct rte_flow_classify_table_entry {
	/* meta-data for classify rule */
	uint32_t rule_id;

	/* Flow action */
	struct classify_action action;
};

struct rte_cls_table {
	/* Input parameters */
	struct rte_table_ops ops;
	uint32_t entry_size;
	enum rte_flow_classify_table_type type;

	/* Handle to the low-level table object */
	void *h_table;
};

#define RTE_FLOW_CLASSIFIER_MAX_NAME_SZ 256

struct rte_flow_classifier {
	/* Input parameters */
	char name[RTE_FLOW_CLASSIFIER_MAX_NAME_SZ];
	int socket_id;

	/* Internal */
	/* ntuple_filter */
	struct rte_eth_ntuple_filter ntuple_filter;

	/* classifier tables */
	struct rte_cls_table tables[RTE_FLOW_CLASSIFY_TABLE_MAX];
	uint32_t table_mask;
	uint32_t num_tables;

	uint16_t nb_pkts;
	struct rte_flow_classify_table_entry
		*entries[RTE_PORT_IN_BURST_SIZE_MAX];
} __rte_cache_aligned;

enum {
	PROTO_FIELD_IPV4,
	SRC_FIELD_IPV4,
	DST_FIELD_IPV4,
	SRCP_FIELD_IPV4,
	DSTP_FIELD_IPV4,
	NUM_FIELDS_IPV4
};

struct acl_keys {
	struct rte_table_acl_rule_add_params key_add; /* add key */
	struct rte_table_acl_rule_delete_params	key_del; /* delete key */
};

struct classify_rules {
	enum rte_flow_classify_rule_type type;
	union {
		struct rte_flow_classify_ipv4_5tuple ipv4_5tuple;
	} u;
};

struct rte_flow_classify_rule {
	uint32_t id; /* unique ID of classify rule */
	enum rte_flow_classify_table_type tbl_type; /* rule table */
	struct classify_rules rules; /* union of rules */
	union {
		struct acl_keys key;
	} u;
	int key_found;   /* rule key found in table */
	struct rte_flow_classify_table_entry entry;  /* rule meta data */
	void *entry_ptr; /* handle to the table entry for rule meta data */
};

int __rte_experimental
rte_flow_classify_validate(
		   struct rte_flow_classifier *cls,
		   const struct rte_flow_attr *attr,
		   const struct rte_flow_item pattern[],
		   const struct rte_flow_action actions[],
		   struct rte_flow_error *error)
{
	struct rte_flow_item *items;
	parse_filter_t parse_filter;
	uint32_t item_num = 0;
	uint32_t i = 0;
	int ret;

	if (error == NULL)
		return -EINVAL;

	if (cls == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: rte_flow_classifier parameter is NULL\n",
			__func__);
		return -EINVAL;
	}

	if (!attr) {
		rte_flow_error_set(error, EINVAL,
				   RTE_FLOW_ERROR_TYPE_ATTR,
				   NULL, "NULL attribute.");
		return -EINVAL;
	}

	if (!pattern) {
		rte_flow_error_set(error,
			EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
			NULL, "NULL pattern.");
		return -EINVAL;
	}

	if (!actions) {
		rte_flow_error_set(error, EINVAL,
				   RTE_FLOW_ERROR_TYPE_ACTION_NUM,
				   NULL, "NULL action.");
		return -EINVAL;
	}

	memset(&cls->ntuple_filter, 0, sizeof(cls->ntuple_filter));

	/* Get the non-void item number of pattern */
	while ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_END) {
		if ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_VOID)
			item_num++;
		i++;
	}
	item_num++;

	items = malloc(item_num * sizeof(struct rte_flow_item));
	if (!items) {
		rte_flow_error_set(error, ENOMEM,
				RTE_FLOW_ERROR_TYPE_ITEM_NUM,
				NULL, "No memory for pattern items.");
		return -ENOMEM;
	}

	memset(items, 0, item_num * sizeof(struct rte_flow_item));
	classify_pattern_skip_void_item(items, pattern);

	parse_filter = classify_find_parse_filter_func(items);
	if (!parse_filter) {
		rte_flow_error_set(error, EINVAL,
				RTE_FLOW_ERROR_TYPE_ITEM,
				pattern, "Unsupported pattern");
		free(items);
		return -EINVAL;
	}

	ret = parse_filter(attr, items, actions, &cls->ntuple_filter, error);
	free(items);
	return ret;
}


#define uint32_t_to_char(ip, a, b, c, d) do {\
		*a = (unsigned char)(ip >> 24 & 0xff);\
		*b = (unsigned char)(ip >> 16 & 0xff);\
		*c = (unsigned char)(ip >> 8 & 0xff);\
		*d = (unsigned char)(ip & 0xff);\
	} while (0)

static inline void
print_acl_ipv4_key_add(struct rte_table_acl_rule_add_params *key)
{
	unsigned char a, b, c, d;

	printf("%s:    0x%02hhx/0x%hhx ", __func__,
		key->field_value[PROTO_FIELD_IPV4].value.u8,
		key->field_value[PROTO_FIELD_IPV4].mask_range.u8);

	uint32_t_to_char(key->field_value[SRC_FIELD_IPV4].value.u32,
			&a, &b, &c, &d);
	printf(" %hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
			key->field_value[SRC_FIELD_IPV4].mask_range.u32);

	uint32_t_to_char(key->field_value[DST_FIELD_IPV4].value.u32,
			&a, &b, &c, &d);
	printf("%hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
			key->field_value[DST_FIELD_IPV4].mask_range.u32);

	printf("%hu : 0x%x %hu : 0x%x",
		key->field_value[SRCP_FIELD_IPV4].value.u16,
		key->field_value[SRCP_FIELD_IPV4].mask_range.u16,
		key->field_value[DSTP_FIELD_IPV4].value.u16,
		key->field_value[DSTP_FIELD_IPV4].mask_range.u16);

	printf(" priority: 0x%x\n", key->priority);
}

static inline void
print_acl_ipv4_key_delete(struct rte_table_acl_rule_delete_params *key)
{
	unsigned char a, b, c, d;

	printf("%s: 0x%02hhx/0x%hhx ", __func__,
		key->field_value[PROTO_FIELD_IPV4].value.u8,
		key->field_value[PROTO_FIELD_IPV4].mask_range.u8);

	uint32_t_to_char(key->field_value[SRC_FIELD_IPV4].value.u32,
			&a, &b, &c, &d);
	printf(" %hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
			key->field_value[SRC_FIELD_IPV4].mask_range.u32);

	uint32_t_to_char(key->field_value[DST_FIELD_IPV4].value.u32,
			&a, &b, &c, &d);
	printf("%hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
			key->field_value[DST_FIELD_IPV4].mask_range.u32);

	printf("%hu : 0x%x %hu : 0x%x\n",
		key->field_value[SRCP_FIELD_IPV4].value.u16,
		key->field_value[SRCP_FIELD_IPV4].mask_range.u16,
		key->field_value[DSTP_FIELD_IPV4].value.u16,
		key->field_value[DSTP_FIELD_IPV4].mask_range.u16);
}

static int
rte_flow_classifier_check_params(struct rte_flow_classifier_params *params)
{
	if (params == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: Incorrect value for parameter params\n", __func__);
		return -EINVAL;
	}

	/* name */
	if (params->name == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: Incorrect value for parameter name\n", __func__);
		return -EINVAL;
	}

	/* socket */
	if ((params->socket_id < 0) ||
	    (params->socket_id >= RTE_MAX_NUMA_NODES)) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: Incorrect value for parameter socket_id\n",
			__func__);
		return -EINVAL;
	}

	return 0;
}

struct rte_flow_classifier * __rte_experimental
rte_flow_classifier_create(struct rte_flow_classifier_params *params)
{
	struct rte_flow_classifier *cls;
	int ret;

	/* Check input parameters */
	ret = rte_flow_classifier_check_params(params);
	if (ret != 0) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: flow classifier params check failed (%d)\n",
			__func__, ret);
		return NULL;
	}

	/* Allocate memory for the flow classifier */
	cls = rte_zmalloc_socket("FLOW_CLASSIFIER",
			sizeof(struct rte_flow_classifier),
			RTE_CACHE_LINE_SIZE, params->socket_id);

	if (cls == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: flow classifier memory allocation failed\n",
			__func__);
		return NULL;
	}

	/* Save input parameters */
	snprintf(cls->name, RTE_FLOW_CLASSIFIER_MAX_NAME_SZ, "%s",
			params->name);

	cls->socket_id = params->socket_id;

	return cls;
}

static void
rte_flow_classify_table_free(struct rte_cls_table *table)
{
	if (table->ops.f_free != NULL)
		table->ops.f_free(table->h_table);
}

int __rte_experimental
rte_flow_classifier_free(struct rte_flow_classifier *cls)
{
	uint32_t i;

	/* Check input parameters */
	if (cls == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: rte_flow_classifier parameter is NULL\n",
			__func__);
		return -EINVAL;
	}

	/* Free tables */
	for (i = 0; i < cls->num_tables; i++) {
		struct rte_cls_table *table = &cls->tables[i];

		rte_flow_classify_table_free(table);
	}

	/* Free flow classifier memory */
	rte_free(cls);

	return 0;
}

static int
rte_table_check_params(struct rte_flow_classifier *cls,
		struct rte_flow_classify_table_params *params)
{
	if (cls == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: flow classifier parameter is NULL\n",
			__func__);
		return -EINVAL;
	}
	if (params == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR, "%s: params parameter is NULL\n",
			__func__);
		return -EINVAL;
	}

	/* ops */
	if (params->ops == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR, "%s: params->ops is NULL\n",
			__func__);
		return -EINVAL;
	}

	if (params->ops->f_create == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: f_create function pointer is NULL\n", __func__);
		return -EINVAL;
	}

	if (params->ops->f_lookup == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: f_lookup function pointer is NULL\n", __func__);
		return -EINVAL;
	}

	/* De we have room for one more table? */
	if (cls->num_tables == RTE_FLOW_CLASSIFY_TABLE_MAX) {
		RTE_FLOW_CLASSIFY_LOG(ERR,
			"%s: Incorrect value for num_tables parameter\n",
			__func__);
		return -EINVAL;
	}

	return 0;
}

int __rte_experimental
rte_flow_classify_table_create(struct rte_flow_classifier *cls,
	struct rte_flow_classify_table_params *params)
{
	struct rte_cls_table *table;
	void *h_table;
	uint32_t entry_size;
	int ret;

	/* Check input arguments */
	ret = rte_table_check_params(cls, params);
	if (ret != 0)
		return ret;

	/* calculate table entry size */
	entry_size = sizeof(struct rte_flow_classify_table_entry);

	/* Create the table */
	h_table = params->ops->f_create(params->arg_create, cls->socket_id,
		entry_size);
	if (h_table == NULL) {
		RTE_FLOW_CLASSIFY_LOG(ERR, "%s: Table creation failed\n",
			__func__);
		return -EINVAL;
	}

	/* Commit current table to the classifier */
	table = &cls->tables[cls->num_tables];
	table->type = params->type;
	cls->num_tables++;

	/* Save input parameters */
	memcpy(&table->ops, params->ops, sizeof(struct rte_table_ops));

	/* Initialize table internal data structure */
	table->entry_size = entry_size;
	table->h_table = h_table;

	return 0;
}

static struct rte_flow_classify_rule *
allocate_acl_ipv4_5tuple_rule(struct rte_flow_classifier *cls)
{
	struct rte_flow_classify_rule *rule;
	int log_level;

	rule = malloc(sizeof(struct rte_flow_classify_rule));
	if (!rule)
		return rule;

	memset(rule, 0, sizeof(struct rte_flow_classify_rule));
	rule->id = unique_id++;
	rule->rules.type = RTE_FLOW_CLASSIFY_RULE_TYPE_IPV4_5TUPLE;

	/* key add values */
	rule->u.key.key_add.priority = cls->ntuple_filter.priority;
	rule->u.key.key_add.field_value[PROTO_FIELD_IPV4].mask_range.u8 =
			cls->ntuple_filter.proto_mask;
	rule->u.key.key_add.field_value[PROTO_FIELD_IPV4].value.u8 =
			cls->ntuple_filter.proto;
	rule->rules.u.ipv4_5tuple.proto = cls->ntuple_filter.proto;
	rule->rules.u.ipv4_5tuple.proto_mask = cls->ntuple_filter.proto_mask;

	rule->u.key.key_add.field_value[SRC_FIELD_IPV4].mask_range.u32 =
			cls->ntuple_filter.src_ip_mask;
	rule->u.key.key_add.field_value[SRC_FIELD_IPV4].value.u32 =
			cls->ntuple_filter.src_ip;
	rule->rules.u.ipv4_5tuple.src_ip_mask = cls->ntuple_filter.src_ip_mask;
	rule->rules.u.ipv4_5tuple.src_ip = cls->ntuple_filter.src_ip;

	rule->u.key.key_add.field_value[DST_FIELD_IPV4].mask_range.u32 =
			cls->ntuple_filter.dst_ip_mask;
	rule->u.key.key_add.field_value[DST_FIELD_IPV4].value.u32 =
			cls->ntuple_filter.dst_ip;
	rule->rules.u.ipv4_5tuple.dst_ip_mask = cls->ntuple_filter.dst_ip_mask;
	rule->rules.u.ipv4_5tuple.dst_ip = cls->ntuple_filter.dst_ip;

	rule->u.key.key_add.field_value[SRCP_FIELD_IPV4].mask_range.u16 =
			cls->ntuple_filter.src_port_mask;
	rule->u.key.key_add.field_value[SRCP_FIELD_IPV4].value.u16 =
			cls->ntuple_filter.src_port;
	rule->rules.u.ipv4_5tuple.src_port_mask =
			cls->ntuple_filter.src_port_mask;
	rule->rules.u.ipv4_5tuple.src_port = cls->ntuple_filter.src_port;

	rule->u.key.key_add.field_value[DSTP_FIELD_IPV4].mask_range.u16 =
			cls->ntuple_filter.dst_port_mask;
	rule->u.key.key_add.field_value[DSTP_FIELD_IPV4].value.u16 =
			cls->ntuple_filter.dst_port;
	rule->rules.u.ipv4_5tuple.dst_port_mask =
			cls->ntuple_filter.dst_port_mask;
	rule->rules.u.ipv4_5tuple.dst_port = cls->ntuple_filter.dst_port;

	log_level = rte_log_get_level(librte_flow_classify_logtype);

	if (log_level == RTE_LOG_DEBUG)
		print_acl_ipv4_key_add(&rule->u.key.key_add);

	/* key delete values */
	memcpy(&rule->u.key.key_del.field_value[PROTO_FIELD_IPV4],
	       &rule->u.key.key_add.field_value[PROTO_FIELD_IPV4],
	       NUM_FIELDS_IPV4 * sizeof(struct rte_acl_field));

	if (log_level == RTE_LOG_DEBUG)
		print_acl_ipv4_key_delete(&rule->u.key.key_del);

	return rule;
}

struct rte_flow_classify_rule * __rte_experimental
rte_flow_classify_table_entry_add(struct rte_flow_classifier *cls,
		const struct rte_flow_attr *attr,
		const struct rte_flow_item pattern[],
		const struct rte_flow_action actions[],
		int *key_found,
		struct rte_flow_error *error)
{
	struct rte_flow_classify_rule *rule;
	struct rte_flow_classify_table_entry *table_entry;
	struct classify_action *action;
	uint32_t i;
	int ret;

	if (!error)
		return NULL;

	if (key_found == NULL) {
		rte_flow_error_set(error, EINVAL,
				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
				NULL, "NULL key_found.");
		return NULL;
	}

	/* parse attr, pattern and actions */
	ret = rte_flow_classify_validate(cls, attr, pattern, actions, error);
	if (ret < 0)
		return NULL;

	switch (table_type) {
	case RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE:
		rule = allocate_acl_ipv4_5tuple_rule(cls);
		if (!rule)
			return NULL;
		rule->tbl_type = table_type;
		cls->table_mask |= table_type;
		break;
	default:
		return NULL;
	}

	action = classify_get_flow_action();
	table_entry = &rule->entry;
	table_entry->rule_id = rule->id;
	table_entry->action.action_mask = action->action_mask;

	/* Copy actions */
	if (action->action_mask & (1LLU << RTE_FLOW_ACTION_TYPE_COUNT)) {
		memcpy(&table_entry->action.act.counter, &action->act.counter,
				sizeof(table_entry->action.act.counter));
	}
	if (action->action_mask & (1LLU << RTE_FLOW_ACTION_TYPE_MARK)) {
		memcpy(&table_entry->action.act.mark, &action->act.mark,
				sizeof(table_entry->action.act.mark));
	}

	for (i = 0; i < cls->num_tables; i++) {
		struct rte_cls_table *table = &cls->tables[i];

		if (table->type == table_type) {
			if (table->ops.f_add != NULL) {
				ret = table->ops.f_add(
					table->h_table,
					&rule->u.key.key_add,
					&rule->entry,
					&rule->key_found,
					&rule->entry_ptr);
				if (ret) {
					free(rule);
					return NULL;
				}

			*key_found = rule->key_found;
			}

			return rule;
		}
	}
	free(rule);
	return NULL;
}

int __rte_experimental
rte_flow_classify_table_entry_delete(struct rte_flow_classifier *cls,
		struct rte_flow_classify_rule *rule)
{
	uint32_t i;
	int ret = -EINVAL;

	if (!cls || !rule)
		return ret;
	enum rte_flow_classify_table_type tbl_type = rule->tbl_type;

	for (i = 0; i < cls->num_tables; i++) {
		struct rte_cls_table *table = &cls->tables[i];

		if (table->type == tbl_type) {
			if (table->ops.f_delete != NULL) {
				ret = table->ops.f_delete(table->h_table,
						&rule->u.key.key_del,
						&rule->key_found,
						&rule->entry);

				return ret;
			}
		}
	}
	free(rule);
	return ret;
}

static int
flow_classifier_lookup(struct rte_flow_classifier *cls,
		struct rte_cls_table *table,
		struct rte_mbuf **pkts,
		const uint16_t nb_pkts)
{
	int ret = -EINVAL;
	uint64_t pkts_mask;
	uint64_t lookup_hit_mask;

	pkts_mask = RTE_LEN2MASK(nb_pkts, uint64_t);
	ret = table->ops.f_lookup(table->h_table,
		pkts, pkts_mask, &lookup_hit_mask,
		(void **)cls->entries);

	if (!ret && lookup_hit_mask)
		cls->nb_pkts = nb_pkts;
	else
		cls->nb_pkts = 0;

	return ret;
}

static int
action_apply(struct rte_flow_classifier *cls,
		struct rte_flow_classify_rule *rule,
		struct rte_flow_classify_stats *stats)
{
	struct rte_flow_classify_ipv4_5tuple_stats *ntuple_stats;
	struct rte_flow_classify_table_entry *entry = &rule->entry;
	uint64_t count = 0;
	uint32_t action_mask = entry->action.action_mask;
	int i, ret = -EINVAL;

	if (action_mask & (1LLU << RTE_FLOW_ACTION_TYPE_COUNT)) {
		for (i = 0; i < cls->nb_pkts; i++) {
			if (rule->id == cls->entries[i]->rule_id)
				count++;
		}
		if (count) {
			ret = 0;
			ntuple_stats = stats->stats;
			ntuple_stats->counter1 = count;
			ntuple_stats->ipv4_5tuple = rule->rules.u.ipv4_5tuple;
		}
	}
	return ret;
}

int __rte_experimental
rte_flow_classifier_query(struct rte_flow_classifier *cls,
		struct rte_mbuf **pkts,
		const uint16_t nb_pkts,
		struct rte_flow_classify_rule *rule,
		struct rte_flow_classify_stats *stats)
{
	enum rte_flow_classify_table_type tbl_type;
	uint32_t i;
	int ret = -EINVAL;

	if (!cls || !rule || !stats || !pkts  || nb_pkts == 0)
		return ret;

	tbl_type = rule->tbl_type;
	for (i = 0; i < cls->num_tables; i++) {
		struct rte_cls_table *table = &cls->tables[i];

			if (table->type == tbl_type) {
				ret = flow_classifier_lookup(cls, table,
						pkts, nb_pkts);
				if (!ret) {
					ret = action_apply(cls, rule, stats);
					return ret;
				}
			}
	}
	return ret;
}

RTE_INIT(librte_flow_classify_init_log);

static void
librte_flow_classify_init_log(void)
{
	librte_flow_classify_logtype =
		rte_log_register("lib.flow_classify");
	if (librte_flow_classify_logtype >= 0)
		rte_log_set_level(librte_flow_classify_logtype, RTE_LOG_INFO);
}