summaryrefslogtreecommitdiff
path: root/lib/librte_acl/acl_run_neon.h
blob: 01b9766d8ba36bde4f30db2976d173d3eb368f87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2015 Cavium, Inc
 */

#include "acl_run.h"
#include "acl_vect.h"

struct _neon_acl_const {
	rte_xmm_t xmm_shuffle_input;
	rte_xmm_t xmm_index_mask;
	rte_xmm_t range_base;
} neon_acl_const  __attribute__((aligned(RTE_CACHE_LINE_SIZE))) = {
	{
		.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}
	},
	{
		.u32 = {RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX,
		RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX}
	},
	{
		.u32 = {0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c}
	},
};

/*
 * Resolve priority for multiple results (neon version).
 * This consists comparing the priority of the current traversal with the
 * running set of results for the packet.
 * For each result, keep a running array of the result (rule number) and
 * its priority for each category.
 */
static inline void
resolve_priority_neon(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
		      struct parms *parms,
		      const struct rte_acl_match_results *p,
		      uint32_t categories)
{
	uint32_t x;
	int32x4_t results, priority, results1, priority1;
	uint32x4_t selector;
	int32_t *saved_results, *saved_priority;

	for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
		saved_results = (int32_t *)(&parms[n].cmplt->results[x]);
		saved_priority = (int32_t *)(&parms[n].cmplt->priority[x]);

		/* get results and priorities for completed trie */
		results = vld1q_s32(
			(const int32_t *)&p[transition].results[x]);
		priority = vld1q_s32(
			(const int32_t *)&p[transition].priority[x]);

		/* if this is not the first completed trie */
		if (parms[n].cmplt->count != ctx->num_tries) {
			/* get running best results and their priorities */
			results1 = vld1q_s32(saved_results);
			priority1 = vld1q_s32(saved_priority);

			/* select results that are highest priority */
			selector = vcgtq_s32(priority1, priority);
			results = vbslq_s32(selector, results1, results);
			priority = vbslq_s32(selector, priority1, priority);
		}

		/* save running best results and their priorities */
		vst1q_s32(saved_results, results);
		vst1q_s32(saved_priority, priority);
	}
}

/*
 * Check for any match in 4 transitions
 */
static __rte_always_inline uint32_t
check_any_match_x4(uint64_t val[])
{
	return (val[0] | val[1] | val[2] | val[3]) & RTE_ACL_NODE_MATCH;
}

static __rte_always_inline void
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
		   struct acl_flow_data *flows, uint64_t transitions[])
{
	while (check_any_match_x4(transitions)) {
		transitions[0] = acl_match_check(transitions[0], slot, ctx,
			parms, flows, resolve_priority_neon);
		transitions[1] = acl_match_check(transitions[1], slot + 1, ctx,
			parms, flows, resolve_priority_neon);
		transitions[2] = acl_match_check(transitions[2], slot + 2, ctx,
			parms, flows, resolve_priority_neon);
		transitions[3] = acl_match_check(transitions[3], slot + 3, ctx,
			parms, flows, resolve_priority_neon);
	}
}

/*
 * Process 4 transitions (in 2 NEON Q registers) in parallel
 */
static __rte_always_inline int32x4_t
transition4(int32x4_t next_input, const uint64_t *trans, uint64_t transitions[])
{
	int32x4x2_t tr_hi_lo;
	int32x4_t t, in, r;
	uint32x4_t index_msk, node_type, addr;
	uint32x4_t dfa_msk, mask, quad_ofs, dfa_ofs;

	/* Move low 32 into tr_hi_lo.val[0] and high 32 into tr_hi_lo.val[1] */
	tr_hi_lo = vld2q_s32((const int32_t *)transitions);

	/* Calculate the address (array index) for all 4 transitions. */

	index_msk = vld1q_u32((const uint32_t *)&neon_acl_const.xmm_index_mask);

	/* Calc node type and node addr */
	node_type = vbicq_s32(tr_hi_lo.val[0], index_msk);
	addr = vandq_s32(tr_hi_lo.val[0], index_msk);

	/* t = 0 */
	t = veorq_s32(node_type, node_type);

	/* mask for DFA type(0) nodes */
	dfa_msk = vceqq_u32(node_type, t);

	mask = vld1q_s32((const int32_t *)&neon_acl_const.xmm_shuffle_input);
	in = vqtbl1q_u8((uint8x16_t)next_input, (uint8x16_t)mask);

	/* DFA calculations. */
	r = vshrq_n_u32(in, 30); /* div by 64 */
	mask = vld1q_s32((const int32_t *)&neon_acl_const.range_base);
	r = vaddq_u8(r, mask);
	t = vshrq_n_u32(in, 24);
	r = vqtbl1q_u8((uint8x16_t)tr_hi_lo.val[1], (uint8x16_t)r);
	dfa_ofs = vsubq_s32(t, r);

	/* QUAD/SINGLE calculations. */
	t = vcgtq_s8(in, tr_hi_lo.val[1]);
	t = vabsq_s8(t);
	t = vpaddlq_u8(t);
	quad_ofs = vpaddlq_u16(t);

	/* blend DFA and QUAD/SINGLE. */
	t = vbslq_u8(dfa_msk, dfa_ofs, quad_ofs);

	/* calculate address for next transitions */
	addr = vaddq_u32(addr, t);

	/* Fill next transitions */
	transitions[0] = trans[vgetq_lane_u32(addr, 0)];
	transitions[1] = trans[vgetq_lane_u32(addr, 1)];
	transitions[2] = trans[vgetq_lane_u32(addr, 2)];
	transitions[3] = trans[vgetq_lane_u32(addr, 3)];

	return vshrq_n_u32(next_input, CHAR_BIT);
}

/*
 * Execute trie traversal with 8 traversals in parallel
 */
static inline int
search_neon_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
	      uint32_t *results, uint32_t total_packets, uint32_t categories)
{
	int n;
	struct acl_flow_data flows;
	uint64_t index_array[8];
	struct completion cmplt[8];
	struct parms parms[8];
	int32x4_t input0, input1;

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
		     total_packets, categories, ctx->trans_table);

	for (n = 0; n < 8; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	 /* Check for any matches. */
	acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
	acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);

	while (flows.started > 0) {
		/* Gather 4 bytes of input data for each stream. */
		input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input0, 0);
		input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 4), input1, 0);

		input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input0, 1);
		input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 5), input1, 1);

		input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input0, 2);
		input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 6), input1, 2);

		input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input0, 3);
		input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 7), input1, 3);

		/* Process the 4 bytes of input on each stream. */

		input0 = transition4(input0, flows.trans, &index_array[0]);
		input1 = transition4(input1, flows.trans, &index_array[4]);

		input0 = transition4(input0, flows.trans, &index_array[0]);
		input1 = transition4(input1, flows.trans, &index_array[4]);

		input0 = transition4(input0, flows.trans, &index_array[0]);
		input1 = transition4(input1, flows.trans, &index_array[4]);

		input0 = transition4(input0, flows.trans, &index_array[0]);
		input1 = transition4(input1, flows.trans, &index_array[4]);

		 /* Check for any matches. */
		acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
		acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);
	}

	return 0;
}

/*
 * Execute trie traversal with 4 traversals in parallel
 */
static inline int
search_neon_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
	      uint32_t *results, int total_packets, uint32_t categories)
{
	int n;
	struct acl_flow_data flows;
	uint64_t index_array[4];
	struct completion cmplt[4];
	struct parms parms[4];
	int32x4_t input;

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
		     total_packets, categories, ctx->trans_table);

	for (n = 0; n < 4; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	/* Check for any matches. */
	acl_match_check_x4(0, ctx, parms, &flows, index_array);

	while (flows.started > 0) {
		/* Gather 4 bytes of input data for each stream. */
		input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input, 0);
		input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input, 1);
		input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input, 2);
		input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input, 3);

		/* Process the 4 bytes of input on each stream. */
		input = transition4(input, flows.trans, index_array);
		input = transition4(input, flows.trans, index_array);
		input = transition4(input, flows.trans, index_array);
		input = transition4(input, flows.trans, index_array);

		/* Check for any matches. */
		acl_match_check_x4(0, ctx, parms, &flows, index_array);
	}

	return 0;
}