summaryrefslogtreecommitdiff
path: root/drivers/net/mlx5/mlx5_rxtx_vec_sse.h
blob: dce3ee4b40b34f1f565d573875e11c40f5efcd89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2017 6WIND S.A.
 * Copyright 2017 Mellanox Technologies, Ltd
 */

#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_

#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <smmintrin.h>

#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>

#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_rxtx_vec.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

/**
 * Fill in buffer descriptors in a multi-packet send descriptor.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param dseg
 *   Pointer to buffer descriptor to be written.
 * @param pkts
 *   Pointer to array of packets to be sent.
 * @param n
 *   Number of packets to be filled.
 */
static inline void
txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
	      struct rte_mbuf **pkts, unsigned int n)
{
	unsigned int pos;
	uintptr_t addr;
	const __m128i shuf_mask_dseg =
		_mm_set_epi8(8,  9, 10, 11, /* addr, bswap64 */
			    12, 13, 14, 15,
			     7,  6,  5,  4, /* lkey */
			     0,  1,  2,  3  /* length, bswap32 */);
#ifdef MLX5_PMD_SOFT_COUNTERS
	uint32_t tx_byte = 0;
#endif

	for (pos = 0; pos < n; ++pos, ++dseg) {
		__m128i desc;
		struct rte_mbuf *pkt = pkts[pos];

		addr = rte_pktmbuf_mtod(pkt, uintptr_t);
		desc = _mm_set_epi32(addr >> 32,
				     addr,
				     mlx5_tx_mb2mr(txq, pkt),
				     DATA_LEN(pkt));
		desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
		_mm_store_si128(dseg, desc);
#ifdef MLX5_PMD_SOFT_COUNTERS
		tx_byte += DATA_LEN(pkt);
#endif
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	txq->stats.obytes += tx_byte;
#endif
}

/**
 * Send multi-segmented packets until it encounters a single segment packet in
 * the pkts list.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param pkts
 *   Pointer to array of packets to be sent.
 * @param pkts_n
 *   Number of packets to be sent.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
static uint16_t
txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
	      uint16_t pkts_n)
{
	uint16_t elts_head = txq->elts_head;
	const uint16_t elts_n = 1 << txq->elts_n;
	const uint16_t elts_m = elts_n - 1;
	const uint16_t wq_n = 1 << txq->wqe_n;
	const uint16_t wq_mask = wq_n - 1;
	const unsigned int nb_dword_per_wqebb =
		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
	const unsigned int nb_dword_in_hdr =
		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
	unsigned int n;
	volatile struct mlx5_wqe *wqe = NULL;
	bool metadata_ol =
		txq->offloads & DEV_TX_OFFLOAD_MATCH_METADATA ? true : false;

	assert(elts_n > pkts_n);
	mlx5_tx_complete(txq);
	if (unlikely(!pkts_n))
		return 0;
	for (n = 0; n < pkts_n; ++n) {
		struct rte_mbuf *buf = pkts[n];
		unsigned int segs_n = buf->nb_segs;
		unsigned int ds = nb_dword_in_hdr;
		unsigned int len = PKT_LEN(buf);
		uint16_t wqe_ci = txq->wqe_ci;
		const __m128i shuf_mask_ctrl =
			_mm_set_epi8(15, 14, 13, 12,
				      8,  9, 10, 11, /* bswap32 */
				      4,  5,  6,  7, /* bswap32 */
				      0,  1,  2,  3  /* bswap32 */);
		uint8_t cs_flags;
		uint16_t max_elts;
		uint16_t max_wqe;
		__m128i *t_wqe, *dseg;
		__m128i ctrl;
		rte_be32_t metadata =
			metadata_ol && (buf->ol_flags & PKT_TX_METADATA) ?
			buf->tx_metadata : 0;

		assert(segs_n);
		max_elts = elts_n - (elts_head - txq->elts_tail);
		max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
		/*
		 * A MPW session consumes 2 WQEs at most to
		 * include MLX5_MPW_DSEG_MAX pointers.
		 */
		if (segs_n == 1 ||
		    max_elts < segs_n || max_wqe < 2)
			break;
		if (segs_n > MLX5_MPW_DSEG_MAX) {
			txq->stats.oerrors++;
			break;
		}
		wqe = &((volatile struct mlx5_wqe64 *)
			 txq->wqes)[wqe_ci & wq_mask].hdr;
		cs_flags = txq_ol_cksum_to_cs(buf);
		/* Title WQEBB pointer. */
		t_wqe = (__m128i *)wqe;
		dseg = (__m128i *)(wqe + 1);
		do {
			if (!(ds++ % nb_dword_per_wqebb)) {
				dseg = (__m128i *)
					&((volatile struct mlx5_wqe64 *)
					   txq->wqes)[++wqe_ci & wq_mask];
			}
			txq_wr_dseg_v(txq, dseg++, &buf, 1);
			(*txq->elts)[elts_head++ & elts_m] = buf;
			buf = buf->next;
		} while (--segs_n);
		++wqe_ci;
		/* Fill CTRL in the header. */
		ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
				     MLX5_OPC_MOD_MPW << 24 |
				     txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
		ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
		_mm_store_si128(t_wqe, ctrl);
		/* Fill ESEG in the header. */
		_mm_store_si128(t_wqe + 1,
				_mm_set_epi32(0, metadata,
					      (rte_cpu_to_be_16(len) << 16) |
					      cs_flags, 0));
		txq->wqe_ci = wqe_ci;
	}
	if (!n)
		return 0;
	txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
	txq->elts_head = elts_head;
	if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
		/* A CQE slot must always be available. */
		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
		wqe->ctrl[2] = rte_cpu_to_be_32(8);
		wqe->ctrl[3] = txq->elts_head;
		txq->elts_comp = 0;
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	txq->stats.opackets += n;
#endif
	mlx5_tx_dbrec(txq, wqe);
	return n;
}

/**
 * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
 * it returns to make it processed by txq_scatter_v(). All the packets in
 * the pkts list should be single segment packets having same offload flags.
 * This must be checked by txq_count_contig_single_seg() and txq_calc_offload().
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param pkts
 *   Pointer to array of packets to be sent.
 * @param pkts_n
 *   Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
 * @param cs_flags
 *   Checksum offload flags to be written in the descriptor.
 * @param metadata
 *   Metadata value to be written in the descriptor.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
static inline uint16_t
txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
	    uint8_t cs_flags, rte_be32_t metadata)
{
	struct rte_mbuf **elts;
	uint16_t elts_head = txq->elts_head;
	const uint16_t elts_n = 1 << txq->elts_n;
	const uint16_t elts_m = elts_n - 1;
	const unsigned int nb_dword_per_wqebb =
		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
	const unsigned int nb_dword_in_hdr =
		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
	unsigned int n = 0;
	unsigned int pos;
	uint16_t max_elts;
	uint16_t max_wqe;
	uint32_t comp_req = 0;
	const uint16_t wq_n = 1 << txq->wqe_n;
	const uint16_t wq_mask = wq_n - 1;
	uint16_t wq_idx = txq->wqe_ci & wq_mask;
	volatile struct mlx5_wqe64 *wq =
		&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
	volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
	const __m128i shuf_mask_ctrl =
		_mm_set_epi8(15, 14, 13, 12,
			      8,  9, 10, 11, /* bswap32 */
			      4,  5,  6,  7, /* bswap32 */
			      0,  1,  2,  3  /* bswap32 */);
	__m128i *t_wqe, *dseg;
	__m128i ctrl;

	/* Make sure all packets can fit into a single WQE. */
	assert(elts_n > pkts_n);
	mlx5_tx_complete(txq);
	max_elts = (elts_n - (elts_head - txq->elts_tail));
	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
	pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
	assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
	if (unlikely(!pkts_n))
		return 0;
	elts = &(*txq->elts)[elts_head & elts_m];
	/* Loop for available tailroom first. */
	n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
	for (pos = 0; pos < (n & -2); pos += 2)
		_mm_storeu_si128((__m128i *)&elts[pos],
				 _mm_loadu_si128((__m128i *)&pkts[pos]));
	if (n & 1)
		elts[pos] = pkts[pos];
	/* Check if it crosses the end of the queue. */
	if (unlikely(n < pkts_n)) {
		elts = &(*txq->elts)[0];
		for (pos = 0; pos < pkts_n - n; ++pos)
			elts[pos] = pkts[n + pos];
	}
	txq->elts_head += pkts_n;
	/* Save title WQEBB pointer. */
	t_wqe = (__m128i *)wqe;
	dseg = (__m128i *)(wqe + 1);
	/* Calculate the number of entries to the end. */
	n = RTE_MIN(
		(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
		pkts_n);
	/* Fill DSEGs. */
	txq_wr_dseg_v(txq, dseg, pkts, n);
	/* Check if it crosses the end of the queue. */
	if (n < pkts_n) {
		dseg = (__m128i *)txq->wqes;
		txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
	}
	if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
		txq->elts_comp += pkts_n;
	} else {
		/* A CQE slot must always be available. */
		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
		/* Request a completion. */
		txq->elts_comp = 0;
		comp_req = 8;
	}
	/* Fill CTRL in the header. */
	ctrl = _mm_set_epi32(txq->elts_head, comp_req,
			     txq->qp_num_8s | (pkts_n + 2),
			     MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
				txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
	ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
	_mm_store_si128(t_wqe, ctrl);
	/* Fill ESEG in the header. */
	_mm_store_si128(t_wqe + 1, _mm_set_epi32(0, metadata, cs_flags, 0));
#ifdef MLX5_PMD_SOFT_COUNTERS
	txq->stats.opackets += pkts_n;
#endif
	txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
		       nb_dword_per_wqebb;
	/* Ring QP doorbell. */
	mlx5_tx_dbrec_cond_wmb(txq, wqe, pkts_n < MLX5_VPMD_TX_MAX_BURST);
	return pkts_n;
}

/**
 * Store free buffers to RX SW ring.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param pkts
 *   Pointer to array of packets to be stored.
 * @param pkts_n
 *   Number of packets to be stored.
 */
static inline void
rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
{
	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
	unsigned int pos;
	uint16_t p = n & -2;

	for (pos = 0; pos < p; pos += 2) {
		__m128i mbp;

		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
	}
	if (n & 1)
		pkts[pos] = elts[pos];
}

/**
 * Decompress a compressed completion and fill in mbufs in RX SW ring with data
 * extracted from the title completion descriptor.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param cq
 *   Pointer to completion array having a compressed completion at first.
 * @param elts
 *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
 *   the title completion descriptor to be copied to the rest of mbufs.
 */
static inline void
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
		    struct rte_mbuf **elts)
{
	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
	unsigned int pos;
	unsigned int i;
	unsigned int inv = 0;
	/* Mask to shuffle from extracted mini CQE to mbuf. */
	const __m128i shuf_mask1 =
		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
			    -1, -1,         /* skip vlan_tci */
			     6,  7,         /* data_len, bswap16 */
			    -1, -1,  6,  7, /* pkt_len, bswap16 */
			    -1, -1, -1, -1  /* skip packet_type */);
	const __m128i shuf_mask2 =
		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
			    -1, -1,         /* skip vlan_tci */
			    14, 15,         /* data_len, bswap16 */
			    -1, -1, 14, 15, /* pkt_len, bswap16 */
			    -1, -1, -1, -1  /* skip packet_type */);
	/* Restore the compressed count. Must be 16 bits. */
	const uint16_t mcqe_n = t_pkt->data_len +
				(rxq->crc_present * RTE_ETHER_CRC_LEN);
	const __m128i rearm =
		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
	const __m128i rxdf =
		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
	const __m128i crc_adj =
		_mm_set_epi16(0, 0, 0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN,
			      0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN,
			      0, 0);
	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
#ifdef MLX5_PMD_SOFT_COUNTERS
	const __m128i zero = _mm_setzero_si128();
	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
	uint32_t rcvd_byte = 0;
	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
	const __m128i len_shuf_mask =
		_mm_set_epi8(-1, -1, -1, -1,
			     -1, -1, -1, -1,
			     14, 15,  6,  7,
			     10, 11,  2,  3);
#endif

	/*
	 * A. load mCQEs into a 128bit register.
	 * B. store rearm data to mbuf.
	 * C. combine data from mCQEs with rx_descriptor_fields1.
	 * D. store rx_descriptor_fields1.
	 * E. store flow tag (rte_flow mark).
	 */
	for (pos = 0; pos < mcqe_n; ) {
		__m128i mcqe1, mcqe2;
		__m128i rxdf1, rxdf2;
#ifdef MLX5_PMD_SOFT_COUNTERS
		__m128i byte_cnt, invalid_mask;
#endif

		if (!(pos & 0x7) && pos + 8 < mcqe_n)
			rte_prefetch0((void *)(cq + pos + 8));
		/* A.1 load mCQEs into a 128bit register. */
		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
		/* B.1 store rearm data to mbuf. */
		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
		/* D.1 store rx_descriptor_fields1. */
		_mm_storeu_si128((__m128i *)
				  &elts[pos]->rx_descriptor_fields1,
				 rxdf1);
		_mm_storeu_si128((__m128i *)
				  &elts[pos + 1]->rx_descriptor_fields1,
				 rxdf2);
		/* B.1 store rearm data to mbuf. */
		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
		/* D.1 store rx_descriptor_fields1. */
		_mm_storeu_si128((__m128i *)
				  &elts[pos + 2]->rx_descriptor_fields1,
				 rxdf1);
		_mm_storeu_si128((__m128i *)
				  &elts[pos + 3]->rx_descriptor_fields1,
				 rxdf2);
#ifdef MLX5_PMD_SOFT_COUNTERS
		invalid_mask = _mm_set_epi64x(0,
					      (mcqe_n - pos) *
					      sizeof(uint16_t) * 8);
		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
		mcqe1 = _mm_srli_si128(mcqe1, 4);
		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
#endif
		if (rxq->mark) {
			/* E.1 store flow tag (rte_flow mark). */
			elts[pos]->hash.fdir.hi = flow_tag;
			elts[pos + 1]->hash.fdir.hi = flow_tag;
			elts[pos + 2]->hash.fdir.hi = flow_tag;
			elts[pos + 3]->hash.fdir.hi = flow_tag;
		}
		pos += MLX5_VPMD_DESCS_PER_LOOP;
		/* Move to next CQE and invalidate consumed CQEs. */
		if (!(pos & 0x7) && pos < mcqe_n) {
			mcq = (void *)(cq + pos);
			for (i = 0; i < 8; ++i)
				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
		}
	}
	/* Invalidate the rest of CQEs. */
	for (; inv < mcqe_n; ++inv)
		cq[inv].op_own = MLX5_CQE_INVALIDATE;
#ifdef MLX5_PMD_SOFT_COUNTERS
	rxq->stats.ipackets += mcqe_n;
	rxq->stats.ibytes += rcvd_byte;
#endif
	rxq->cq_ci += mcqe_n;
}

/**
 * Calculate packet type and offload flag for mbuf and store it.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param cqes[4]
 *   Array of four 16bytes completions extracted from the original completion
 *   descriptor.
 * @param op_err
 *   Opcode vector having responder error status. Each field is 4B.
 * @param pkts
 *   Pointer to array of packets to be filled.
 */
static inline void
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
			 __m128i op_err, struct rte_mbuf **pkts)
{
	__m128i pinfo0, pinfo1;
	__m128i pinfo, ptype;
	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
					  rxq->hw_timestamp * PKT_RX_TIMESTAMP);
	__m128i cv_flags;
	const __m128i zero = _mm_setzero_si128();
	const __m128i ptype_mask =
		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
	const __m128i ptype_ol_mask =
		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
	const __m128i pinfo_mask =
		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
	const __m128i cv_flag_sel =
		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
					PKT_RX_L4_CKSUM_GOOD) >> 1),
			     0,
			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
			     0,
			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
			     (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
			     0);
	const __m128i cv_mask =
		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
	const __m128i mbuf_init =
		_mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
	__m128i rearm0, rearm1, rearm2, rearm3;
	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;

	/* Extract pkt_info field. */
	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
	/* Extract hdr_type_etc field. */
	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
	if (rxq->mark) {
		const __m128i pinfo_ft_mask =
			_mm_set_epi32(0xffffff00, 0xffffff00,
				      0xffffff00, 0xffffff00);
		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
		__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
		__m128i flow_tag, invalid_mask;

		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
		ol_flags = _mm_or_si128(ol_flags,
					_mm_andnot_si128(invalid_mask,
							 fdir_flags));
		/* Mask out invalid entries. */
		fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
		ol_flags = _mm_or_si128(ol_flags,
					_mm_andnot_si128(
						_mm_cmpeq_epi32(flow_tag,
								pinfo_ft_mask),
						fdir_id_flags));
	}
	/*
	 * Merge the two fields to generate the following:
	 * bit[1]     = l3_ok
	 * bit[2]     = l4_ok
	 * bit[8]     = cv
	 * bit[11:10] = l3_hdr_type
	 * bit[14:12] = l4_hdr_type
	 * bit[15]    = ip_frag
	 * bit[16]    = tunneled
	 * bit[17]    = outer_l3_type
	 */
	ptype = _mm_and_si128(ptype, ptype_mask);
	pinfo = _mm_and_si128(pinfo, pinfo_mask);
	pinfo = _mm_slli_epi32(pinfo, 16);
	/* Make pinfo has merged fields for ol_flags calculation. */
	pinfo = _mm_or_si128(ptype, pinfo);
	ptype = _mm_srli_epi32(pinfo, 10);
	ptype = _mm_packs_epi32(ptype, zero);
	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
	op_err = _mm_srli_epi16(op_err, 8);
	ptype = _mm_or_si128(ptype, op_err);
	pt_idx0 = _mm_extract_epi8(ptype, 0);
	pt_idx1 = _mm_extract_epi8(ptype, 2);
	pt_idx2 = _mm_extract_epi8(ptype, 4);
	pt_idx3 = _mm_extract_epi8(ptype, 6);
	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
	/* Fill flags for checksum and VLAN. */
	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
	cv_flags = _mm_slli_epi32(pinfo, 9);
	cv_flags = _mm_or_si128(pinfo, cv_flags);
	/* Move back flags to start from byte[0]. */
	cv_flags = _mm_srli_epi32(cv_flags, 8);
	/* Mask out garbage bits. */
	cv_flags = _mm_and_si128(cv_flags, cv_mask);
	/* Merge to ol_flags. */
	ol_flags = _mm_or_si128(ol_flags, cv_flags);
	/* Merge mbuf_init and ol_flags. */
	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
	/* Write 8B rearm_data and 8B ol_flags. */
	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
}

/**
 * Receive burst of packets. An errored completion also consumes a mbuf, but the
 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
 * before returning to application.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 * @param[out] err
 *   Pointer to a flag. Set non-zero value if pkts array has at least one error
 *   packet to handle.
 *
 * @return
 *   Number of packets received including errors (<= pkts_n).
 */
static inline uint16_t
rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
	    uint64_t *err)
{
	const uint16_t q_n = 1 << rxq->cqe_n;
	const uint16_t q_mask = q_n - 1;
	volatile struct mlx5_cqe *cq;
	struct rte_mbuf **elts;
	unsigned int pos;
	uint64_t n;
	uint16_t repl_n;
	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
	uint16_t nocmp_n = 0;
	uint16_t rcvd_pkt = 0;
	unsigned int cq_idx = rxq->cq_ci & q_mask;
	unsigned int elts_idx;
	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
	const __m128i owner_check =
		_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
	const __m128i opcode_check =
		_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
	const __m128i format_check =
		_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
	const __m128i resp_err_check =
		_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
#ifdef MLX5_PMD_SOFT_COUNTERS
	uint32_t rcvd_byte = 0;
	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
	const __m128i len_shuf_mask =
		_mm_set_epi8(-1, -1, -1, -1,
			     -1, -1, -1, -1,
			     12, 13,  8,  9,
			      4,  5,  0,  1);
#endif
	/* Mask to shuffle from extracted CQE to mbuf. */
	const __m128i shuf_mask =
		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
			     12, 13, 14, 15, /* rss, bswap32 */
			     10, 11,         /* vlan_tci, bswap16 */
			      4,  5,         /* data_len, bswap16 */
			     -1, -1,         /* zero out 2nd half of pkt_len */
			      4,  5          /* pkt_len, bswap16 */);
	/* Mask to blend from the last Qword to the first DQword. */
	const __m128i blend_mask =
		_mm_set_epi8(-1, -1, -1, -1,
			     -1, -1, -1, -1,
			      0,  0,  0,  0,
			      0,  0,  0, -1);
	const __m128i zero = _mm_setzero_si128();
	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
	const __m128i crc_adj =
		_mm_set_epi16(0, 0, 0, 0, 0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN,
			      0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN);
	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);

	assert(rxq->sges_n == 0);
	assert(rxq->cqe_n == rxq->elts_n);
	cq = &(*rxq->cqes)[cq_idx];
	rte_prefetch0(cq);
	rte_prefetch0(cq + 1);
	rte_prefetch0(cq + 2);
	rte_prefetch0(cq + 3);
	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
	/*
	 * Order of indexes:
	 *   rq_ci >= cq_ci >= rq_pi
	 * Definition of indexes:
	 *   rq_ci - cq_ci := # of buffers owned by HW (posted).
	 *   cq_ci - rq_pi := # of buffers not returned to app (decompressed).
	 *   N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
	 */
	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
	if (repl_n >= rxq->rq_repl_thresh)
		mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
	/* See if there're unreturned mbufs from compressed CQE. */
	rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
	if (rcvd_pkt > 0) {
		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
		rxq->rq_pi += rcvd_pkt;
		pkts += rcvd_pkt;
	}
	elts_idx = rxq->rq_pi & q_mask;
	elts = &(*rxq->elts)[elts_idx];
	/* Not to overflow pkts array. */
	pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
	/* Not to cross queue end. */
	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
	if (!pkts_n)
		return rcvd_pkt;
	/* At this point, there shouldn't be any remained packets. */
	assert(rxq->rq_pi == rxq->cq_ci);
	/*
	 * A. load first Qword (8bytes) in one loop.
	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
	 * C. load remained CQE data and extract necessary fields.
	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
	 *    following structure:
	 *        struct {
	 *          uint8_t  pkt_info;
	 *          uint8_t  flow_tag[3];
	 *          uint16_t byte_cnt;
	 *          uint8_t  rsvd4;
	 *          uint8_t  op_own;
	 *          uint16_t hdr_type_etc;
	 *          uint16_t vlan_info;
	 *          uint32_t rx_has_res;
	 *        } c;
	 * D. fill in mbuf.
	 * E. get valid CQEs.
	 * F. find compressed CQE.
	 */
	for (pos = 0;
	     pos < pkts_n;
	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
		__m128i cqe_tmp1, cqe_tmp2;
		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
		__m128i op_own, op_own_tmp1, op_own_tmp2;
		__m128i opcode, owner_mask, invalid_mask;
		__m128i comp_mask;
		__m128i mask;
#ifdef MLX5_PMD_SOFT_COUNTERS
		__m128i byte_cnt;
#endif
		__m128i mbp1, mbp2;
		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
		unsigned int p1, p2, p3;

		/* Prefetch next 4 CQEs. */
		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
		}
		/* A.0 do not cross the end of CQ. */
		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
		mask = _mm_sll_epi64(ones, mask);
		p = _mm_andnot_si128(mask, p);
		/* A.1 load cqes. */
		p3 = _mm_extract_epi16(p, 3);
		cqes[3] = _mm_loadl_epi64((__m128i *)
					   &cq[pos + p3].sop_drop_qpn);
		rte_compiler_barrier();
		p2 = _mm_extract_epi16(p, 2);
		cqes[2] = _mm_loadl_epi64((__m128i *)
					   &cq[pos + p2].sop_drop_qpn);
		rte_compiler_barrier();
		/* B.1 load mbuf pointers. */
		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
		/* A.1 load a block having op_own. */
		p1 = _mm_extract_epi16(p, 1);
		cqes[1] = _mm_loadl_epi64((__m128i *)
					   &cq[pos + p1].sop_drop_qpn);
		rte_compiler_barrier();
		cqes[0] = _mm_loadl_epi64((__m128i *)
					   &cq[pos].sop_drop_qpn);
		/* B.2 copy mbuf pointers. */
		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
		rte_cio_rmb();
		/* C.1 load remained CQE data and extract necessary fields. */
		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
		/* C.2 generate final structure for mbuf with swapping bytes. */
		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
		/* C.3 adjust CRC length. */
		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
		/* C.4 adjust flow mark. */
		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
		/* D.1 fill in mbuf - rx_descriptor_fields1. */
		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
		/* E.1 extract op_own field. */
		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
		/* C.1 load remained CQE data and extract necessary fields. */
		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
		/* C.2 generate final structure for mbuf with swapping bytes. */
		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
		/* C.3 adjust CRC length. */
		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
		/* C.4 adjust flow mark. */
		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
		/* E.1 extract op_own byte. */
		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
		/* D.1 fill in mbuf - rx_descriptor_fields1. */
		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
		/* E.2 flip owner bit to mark CQEs from last round. */
		owner_mask = _mm_and_si128(op_own, owner_check);
		if (ownership)
			owner_mask = _mm_xor_si128(owner_mask, owner_check);
		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
		owner_mask = _mm_packs_epi32(owner_mask, zero);
		/* E.3 get mask for invalidated CQEs. */
		opcode = _mm_and_si128(op_own, opcode_check);
		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
		/* E.4 mask out beyond boundary. */
		invalid_mask = _mm_or_si128(invalid_mask, mask);
		/* E.5 merge invalid_mask with invalid owner. */
		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
		/* F.1 find compressed CQE format. */
		comp_mask = _mm_and_si128(op_own, format_check);
		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
		comp_mask = _mm_packs_epi32(comp_mask, zero);
		/* F.2 mask out invalid entries. */
		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
		comp_idx = _mm_cvtsi128_si64(comp_mask);
		/* F.3 get the first compressed CQE. */
		comp_idx = comp_idx ?
				__builtin_ctzll(comp_idx) /
					(sizeof(uint16_t) * 8) :
				MLX5_VPMD_DESCS_PER_LOOP;
		/* E.6 mask out entries after the compressed CQE. */
		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
		mask = _mm_sll_epi64(ones, mask);
		invalid_mask = _mm_or_si128(invalid_mask, mask);
		/* E.7 count non-compressed valid CQEs. */
		n = _mm_cvtsi128_si64(invalid_mask);
		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
			MLX5_VPMD_DESCS_PER_LOOP;
		nocmp_n += n;
		/* D.2 get the final invalid mask. */
		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
		mask = _mm_sll_epi64(ones, mask);
		invalid_mask = _mm_or_si128(invalid_mask, mask);
		/* D.3 check error in opcode. */
		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
		opcode = _mm_packs_epi32(opcode, zero);
		opcode = _mm_andnot_si128(invalid_mask, opcode);
		/* D.4 mark if any error is set */
		*err |= _mm_cvtsi128_si64(opcode);
		/* D.5 fill in mbuf - rearm_data and packet_type. */
		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
		if (rxq->hw_timestamp) {
			pkts[pos]->timestamp =
				rte_be_to_cpu_64(cq[pos].timestamp);
			pkts[pos + 1]->timestamp =
				rte_be_to_cpu_64(cq[pos + p1].timestamp);
			pkts[pos + 2]->timestamp =
				rte_be_to_cpu_64(cq[pos + p2].timestamp);
			pkts[pos + 3]->timestamp =
				rte_be_to_cpu_64(cq[pos + p3].timestamp);
		}
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Add up received bytes count. */
		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
#endif
		/*
		 * Break the loop unless more valid CQE is expected, or if
		 * there's a compressed CQE.
		 */
		if (n != MLX5_VPMD_DESCS_PER_LOOP)
			break;
	}
	/* If no new CQE seen, return without updating cq_db. */
	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
		return rcvd_pkt;
	/* Update the consumer indexes for non-compressed CQEs. */
	assert(nocmp_n <= pkts_n);
	rxq->cq_ci += nocmp_n;
	rxq->rq_pi += nocmp_n;
	rcvd_pkt += nocmp_n;
#ifdef MLX5_PMD_SOFT_COUNTERS
	rxq->stats.ipackets += nocmp_n;
	rxq->stats.ibytes += rcvd_byte;
#endif
	/* Decompress the last CQE if compressed. */
	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
		assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
		rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
		/* Return more packets if needed. */
		if (nocmp_n < pkts_n) {
			uint16_t n = rxq->cq_ci - rxq->rq_pi;

			n = RTE_MIN(n, pkts_n - nocmp_n);
			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
			rxq->rq_pi += n;
			rcvd_pkt += n;
		}
	}
	rte_compiler_barrier();
	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
	return rcvd_pkt;
}

#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */