summaryrefslogtreecommitdiff
path: root/drivers/crypto/aesni_mb/rte_aesni_mb_pmd.c
blob: b99e43b07f37edb7ad0a2d652d255da06a893a7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2015-2017 Intel Corporation
 */

#include <intel-ipsec-mb.h>

#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>

#include "rte_aesni_mb_pmd_private.h"

static uint8_t cryptodev_driver_id;

typedef void (*hash_one_block_t)(const void *data, void *digest);
typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys);

/**
 * Calculate the authentication pre-computes
 *
 * @param one_block_hash	Function pointer to calculate digest on ipad/opad
 * @param ipad			Inner pad output byte array
 * @param opad			Outer pad output byte array
 * @param hkey			Authentication key
 * @param hkey_len		Authentication key length
 * @param blocksize		Block size of selected hash algo
 */
static void
calculate_auth_precomputes(hash_one_block_t one_block_hash,
		uint8_t *ipad, uint8_t *opad,
		uint8_t *hkey, uint16_t hkey_len,
		uint16_t blocksize)
{
	unsigned i, length;

	uint8_t ipad_buf[blocksize] __rte_aligned(16);
	uint8_t opad_buf[blocksize] __rte_aligned(16);

	/* Setup inner and outer pads */
	memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
	memset(opad_buf, HMAC_OPAD_VALUE, blocksize);

	/* XOR hash key with inner and outer pads */
	length = hkey_len > blocksize ? blocksize : hkey_len;

	for (i = 0; i < length; i++) {
		ipad_buf[i] ^= hkey[i];
		opad_buf[i] ^= hkey[i];
	}

	/* Compute partial hashes */
	(*one_block_hash)(ipad_buf, ipad);
	(*one_block_hash)(opad_buf, opad);

	/* Clean up stack */
	memset(ipad_buf, 0, blocksize);
	memset(opad_buf, 0, blocksize);
}

/** Get xform chain order */
static enum aesni_mb_operation
aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform)
{
	if (xform == NULL)
		return AESNI_MB_OP_NOT_SUPPORTED;

	if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
		if (xform->next == NULL)
			return AESNI_MB_OP_CIPHER_ONLY;
		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
			return AESNI_MB_OP_CIPHER_HASH;
	}

	if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
		if (xform->next == NULL)
			return AESNI_MB_OP_HASH_ONLY;
		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
			return AESNI_MB_OP_HASH_CIPHER;
	}

	if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
		if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) {
			if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
				return AESNI_MB_OP_AEAD_CIPHER_HASH;
			else
				return AESNI_MB_OP_AEAD_HASH_CIPHER;
		}
	}

	return AESNI_MB_OP_NOT_SUPPORTED;
}

/** Set session authentication parameters */
static int
aesni_mb_set_session_auth_parameters(const struct aesni_mb_op_fns *mb_ops,
		struct aesni_mb_session *sess,
		const struct rte_crypto_sym_xform *xform)
{
	hash_one_block_t hash_oneblock_fn;

	if (xform == NULL) {
		sess->auth.algo = NULL_HASH;
		return 0;
	}

	if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
		AESNI_MB_LOG(ERR, "Crypto xform struct not of type auth");
		return -1;
	}

	/* Select auth generate/verify */
	sess->auth.operation = xform->auth.op;

	/* Set Authentication Parameters */
	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
		sess->auth.algo = AES_XCBC;
		(*mb_ops->aux.keyexp.aes_xcbc)(xform->auth.key.data,
				sess->auth.xcbc.k1_expanded,
				sess->auth.xcbc.k2, sess->auth.xcbc.k3);
		return 0;
	}

	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
		sess->auth.algo = AES_CMAC;
		(*mb_ops->aux.keyexp.aes_cmac_expkey)(xform->auth.key.data,
				sess->auth.cmac.expkey);

		(*mb_ops->aux.keyexp.aes_cmac_subkey)(sess->auth.cmac.expkey,
				sess->auth.cmac.skey1, sess->auth.cmac.skey2);
		return 0;
	}


	switch (xform->auth.algo) {
	case RTE_CRYPTO_AUTH_MD5_HMAC:
		sess->auth.algo = MD5;
		hash_oneblock_fn = mb_ops->aux.one_block.md5;
		break;
	case RTE_CRYPTO_AUTH_SHA1_HMAC:
		sess->auth.algo = SHA1;
		hash_oneblock_fn = mb_ops->aux.one_block.sha1;
		break;
	case RTE_CRYPTO_AUTH_SHA224_HMAC:
		sess->auth.algo = SHA_224;
		hash_oneblock_fn = mb_ops->aux.one_block.sha224;
		break;
	case RTE_CRYPTO_AUTH_SHA256_HMAC:
		sess->auth.algo = SHA_256;
		hash_oneblock_fn = mb_ops->aux.one_block.sha256;
		break;
	case RTE_CRYPTO_AUTH_SHA384_HMAC:
		sess->auth.algo = SHA_384;
		hash_oneblock_fn = mb_ops->aux.one_block.sha384;
		break;
	case RTE_CRYPTO_AUTH_SHA512_HMAC:
		sess->auth.algo = SHA_512;
		hash_oneblock_fn = mb_ops->aux.one_block.sha512;
		break;
	default:
		AESNI_MB_LOG(ERR, "Unsupported authentication algorithm selection");
		return -ENOTSUP;
	}

	/* Calculate Authentication precomputes */
	calculate_auth_precomputes(hash_oneblock_fn,
			sess->auth.pads.inner, sess->auth.pads.outer,
			xform->auth.key.data,
			xform->auth.key.length,
			get_auth_algo_blocksize(sess->auth.algo));

	return 0;
}

/** Set session cipher parameters */
static int
aesni_mb_set_session_cipher_parameters(const struct aesni_mb_op_fns *mb_ops,
		struct aesni_mb_session *sess,
		const struct rte_crypto_sym_xform *xform)
{
	uint8_t is_aes = 0;
	aes_keyexp_t aes_keyexp_fn;

	if (xform == NULL) {
		sess->cipher.mode = NULL_CIPHER;
		return 0;
	}

	if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
		AESNI_MB_LOG(ERR, "Crypto xform struct not of type cipher");
		return -EINVAL;
	}

	/* Select cipher direction */
	switch (xform->cipher.op) {
	case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
		sess->cipher.direction = ENCRYPT;
		break;
	case RTE_CRYPTO_CIPHER_OP_DECRYPT:
		sess->cipher.direction = DECRYPT;
		break;
	default:
		AESNI_MB_LOG(ERR, "Invalid cipher operation parameter");
		return -EINVAL;
	}

	/* Select cipher mode */
	switch (xform->cipher.algo) {
	case RTE_CRYPTO_CIPHER_AES_CBC:
		sess->cipher.mode = CBC;
		is_aes = 1;
		break;
	case RTE_CRYPTO_CIPHER_AES_CTR:
		sess->cipher.mode = CNTR;
		is_aes = 1;
		break;
	case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
		sess->cipher.mode = DOCSIS_SEC_BPI;
		is_aes = 1;
		break;
	case RTE_CRYPTO_CIPHER_DES_CBC:
		sess->cipher.mode = DES;
		break;
	case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
		sess->cipher.mode = DOCSIS_DES;
		break;
	default:
		AESNI_MB_LOG(ERR, "Unsupported cipher mode parameter");
		return -ENOTSUP;
	}

	/* Set IV parameters */
	sess->iv.offset = xform->cipher.iv.offset;
	sess->iv.length = xform->cipher.iv.length;

	/* Check key length and choose key expansion function for AES */
	if (is_aes) {
		switch (xform->cipher.key.length) {
		case AES_128_BYTES:
			sess->cipher.key_length_in_bytes = AES_128_BYTES;
			aes_keyexp_fn = mb_ops->aux.keyexp.aes128;
			break;
		case AES_192_BYTES:
			sess->cipher.key_length_in_bytes = AES_192_BYTES;
			aes_keyexp_fn = mb_ops->aux.keyexp.aes192;
			break;
		case AES_256_BYTES:
			sess->cipher.key_length_in_bytes = AES_256_BYTES;
			aes_keyexp_fn = mb_ops->aux.keyexp.aes256;
			break;
		default:
			AESNI_MB_LOG(ERR, "Invalid cipher key length");
			return -EINVAL;
		}

		/* Expanded cipher keys */
		(*aes_keyexp_fn)(xform->cipher.key.data,
				sess->cipher.expanded_aes_keys.encode,
				sess->cipher.expanded_aes_keys.decode);

	} else {
		if (xform->cipher.key.length != 8) {
			AESNI_MB_LOG(ERR, "Invalid cipher key length");
			return -EINVAL;
		}
		sess->cipher.key_length_in_bytes = 8;

		des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.encode,
				xform->cipher.key.data);
		des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.decode,
				xform->cipher.key.data);
	}

	return 0;
}

static int
aesni_mb_set_session_aead_parameters(const struct aesni_mb_op_fns *mb_ops,
		struct aesni_mb_session *sess,
		const struct rte_crypto_sym_xform *xform)
{
	aes_keyexp_t aes_keyexp_fn;

	switch (xform->aead.op) {
	case RTE_CRYPTO_AEAD_OP_ENCRYPT:
		sess->cipher.direction = ENCRYPT;
		sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
		break;
	case RTE_CRYPTO_AEAD_OP_DECRYPT:
		sess->cipher.direction = DECRYPT;
		sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
		break;
	default:
		AESNI_MB_LOG(ERR, "Invalid aead operation parameter");
		return -EINVAL;
	}

	switch (xform->aead.algo) {
	case RTE_CRYPTO_AEAD_AES_CCM:
		sess->cipher.mode = CCM;
		sess->auth.algo = AES_CCM;
		break;
	default:
		AESNI_MB_LOG(ERR, "Unsupported aead mode parameter");
		return -ENOTSUP;
	}

	/* Set IV parameters */
	sess->iv.offset = xform->aead.iv.offset;
	sess->iv.length = xform->aead.iv.length;

	/* Check key length and choose key expansion function for AES */

	switch (xform->aead.key.length) {
	case AES_128_BYTES:
		sess->cipher.key_length_in_bytes = AES_128_BYTES;
		aes_keyexp_fn = mb_ops->aux.keyexp.aes128;
		break;
	default:
		AESNI_MB_LOG(ERR, "Invalid cipher key length");
		return -EINVAL;
	}

	/* Expanded cipher keys */
	(*aes_keyexp_fn)(xform->aead.key.data,
			sess->cipher.expanded_aes_keys.encode,
			sess->cipher.expanded_aes_keys.decode);

	return 0;
}

/** Parse crypto xform chain and set private session parameters */
int
aesni_mb_set_session_parameters(const struct aesni_mb_op_fns *mb_ops,
		struct aesni_mb_session *sess,
		const struct rte_crypto_sym_xform *xform)
{
	const struct rte_crypto_sym_xform *auth_xform = NULL;
	const struct rte_crypto_sym_xform *cipher_xform = NULL;
	const struct rte_crypto_sym_xform *aead_xform = NULL;
	int ret;

	/* Select Crypto operation - hash then cipher / cipher then hash */
	switch (aesni_mb_get_chain_order(xform)) {
	case AESNI_MB_OP_HASH_CIPHER:
		sess->chain_order = HASH_CIPHER;
		auth_xform = xform;
		cipher_xform = xform->next;
		sess->auth.digest_len = xform->auth.digest_length;
		break;
	case AESNI_MB_OP_CIPHER_HASH:
		sess->chain_order = CIPHER_HASH;
		auth_xform = xform->next;
		cipher_xform = xform;
		sess->auth.digest_len = xform->auth.digest_length;
		break;
	case AESNI_MB_OP_HASH_ONLY:
		sess->chain_order = HASH_CIPHER;
		auth_xform = xform;
		cipher_xform = NULL;
		sess->auth.digest_len = xform->auth.digest_length;
		break;
	case AESNI_MB_OP_CIPHER_ONLY:
		/*
		 * Multi buffer library operates only at two modes,
		 * CIPHER_HASH and HASH_CIPHER. When doing ciphering only,
		 * chain order depends on cipher operation: encryption is always
		 * the first operation and decryption the last one.
		 */
		if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
			sess->chain_order = CIPHER_HASH;
		else
			sess->chain_order = HASH_CIPHER;
		auth_xform = NULL;
		cipher_xform = xform;
		break;
	case AESNI_MB_OP_AEAD_CIPHER_HASH:
		sess->chain_order = CIPHER_HASH;
		sess->aead.aad_len = xform->aead.aad_length;
		sess->auth.digest_len = xform->aead.digest_length;
		aead_xform = xform;
		break;
	case AESNI_MB_OP_AEAD_HASH_CIPHER:
		sess->chain_order = HASH_CIPHER;
		sess->aead.aad_len = xform->aead.aad_length;
		sess->auth.digest_len = xform->aead.digest_length;
		aead_xform = xform;
		break;
	case AESNI_MB_OP_NOT_SUPPORTED:
	default:
		AESNI_MB_LOG(ERR, "Unsupported operation chain order parameter");
		return -ENOTSUP;
	}

	/* Default IV length = 0 */
	sess->iv.length = 0;

	ret = aesni_mb_set_session_auth_parameters(mb_ops, sess, auth_xform);
	if (ret != 0) {
		AESNI_MB_LOG(ERR, "Invalid/unsupported authentication parameters");
		return ret;
	}

	ret = aesni_mb_set_session_cipher_parameters(mb_ops, sess,
			cipher_xform);
	if (ret != 0) {
		AESNI_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
		return ret;
	}

	if (aead_xform) {
		ret = aesni_mb_set_session_aead_parameters(mb_ops, sess,
				aead_xform);
		if (ret != 0) {
			AESNI_MB_LOG(ERR, "Invalid/unsupported aead parameters");
			return ret;
		}
	}

	return 0;
}

/**
 * burst enqueue, place crypto operations on ingress queue for processing.
 *
 * @param __qp         Queue Pair to process
 * @param ops          Crypto operations for processing
 * @param nb_ops       Number of crypto operations for processing
 *
 * @return
 * - Number of crypto operations enqueued
 */
static uint16_t
aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	struct aesni_mb_qp *qp = __qp;

	unsigned int nb_enqueued;

	nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue,
			(void **)ops, nb_ops, NULL);

	qp->stats.enqueued_count += nb_enqueued;

	return nb_enqueued;
}

/** Get multi buffer session */
static inline struct aesni_mb_session *
get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op)
{
	struct aesni_mb_session *sess = NULL;

	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
		if (likely(op->sym->session != NULL))
			sess = (struct aesni_mb_session *)
					get_sym_session_private_data(
					op->sym->session,
					cryptodev_driver_id);
	} else {
		void *_sess = NULL;
		void *_sess_private_data = NULL;

		if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
			return NULL;

		if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
			return NULL;

		sess = (struct aesni_mb_session *)_sess_private_data;

		if (unlikely(aesni_mb_set_session_parameters(qp->op_fns,
				sess, op->sym->xform) != 0)) {
			rte_mempool_put(qp->sess_mp, _sess);
			rte_mempool_put(qp->sess_mp, _sess_private_data);
			sess = NULL;
		}
		op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
		set_sym_session_private_data(op->sym->session,
				cryptodev_driver_id, _sess_private_data);
	}

	if (unlikely(sess == NULL))
		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;

	return sess;
}

/**
 * Process a crypto operation and complete a JOB_AES_HMAC job structure for
 * submission to the multi buffer library for processing.
 *
 * @param	qp	queue pair
 * @param	job	JOB_AES_HMAC structure to fill
 * @param	m	mbuf to process
 *
 * @return
 * - Completed JOB_AES_HMAC structure pointer on success
 * - NULL pointer if completion of JOB_AES_HMAC structure isn't possible
 */
static inline int
set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp,
		struct rte_crypto_op *op, uint8_t *digest_idx)
{
	struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
	struct aesni_mb_session *session;
	uint16_t m_offset = 0;

	session = get_session(qp, op);
	if (session == NULL) {
		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
		return -1;
	}

	/* Set crypto operation */
	job->chain_order = session->chain_order;

	/* Set cipher parameters */
	job->cipher_direction = session->cipher.direction;
	job->cipher_mode = session->cipher.mode;

	job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes;
	job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode;
	job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode;


	/* Set authentication parameters */
	job->hash_alg = session->auth.algo;
	if (job->hash_alg == AES_XCBC) {
		job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
		job->u.XCBC._k2 = session->auth.xcbc.k2;
		job->u.XCBC._k3 = session->auth.xcbc.k3;
	} else if (job->hash_alg == AES_CCM) {
		job->u.CCM.aad = op->sym->aead.aad.data + 18;
		job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
	} else if (job->hash_alg == AES_CMAC) {
		job->u.CMAC._key_expanded = session->auth.cmac.expkey;
		job->u.CMAC._skey1 = session->auth.cmac.skey1;
		job->u.CMAC._skey2 = session->auth.cmac.skey2;

	} else {
		job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner;
		job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer;
	}

	/* Mutable crypto operation parameters */
	if (op->sym->m_dst) {
		m_src = m_dst = op->sym->m_dst;

		/* append space for output data to mbuf */
		char *odata = rte_pktmbuf_append(m_dst,
				rte_pktmbuf_data_len(op->sym->m_src));
		if (odata == NULL) {
			AESNI_MB_LOG(ERR, "failed to allocate space in destination "
					"mbuf for source data");
			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
			return -1;
		}

		memcpy(odata, rte_pktmbuf_mtod(op->sym->m_src, void*),
				rte_pktmbuf_data_len(op->sym->m_src));
	} else {
		m_dst = m_src;
		if (job->hash_alg == AES_CCM)
			m_offset = op->sym->aead.data.offset;
		else
			m_offset = op->sym->cipher.data.offset;
	}

	/* Set digest output location */
	if (job->hash_alg != NULL_HASH &&
			session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
		job->auth_tag_output = qp->temp_digests[*digest_idx];
		*digest_idx = (*digest_idx + 1) % MAX_JOBS;
	} else {
		if (job->hash_alg == AES_CCM)
			job->auth_tag_output = op->sym->aead.digest.data;
		else
			job->auth_tag_output = op->sym->auth.digest.data;
	}

	/*
	 * Multi-buffer library current only support returning a truncated
	 * digest length as specified in the relevant IPsec RFCs
	 */
	if (job->hash_alg != AES_CCM && job->hash_alg != AES_CMAC)
		job->auth_tag_output_len_in_bytes =
				get_truncated_digest_byte_length(job->hash_alg);
	else
		job->auth_tag_output_len_in_bytes = session->auth.digest_len;


	/* Set IV parameters */

	job->iv_len_in_bytes = session->iv.length;

	/* Data  Parameter */
	job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
	job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);

	if (job->hash_alg == AES_CCM) {
		job->cipher_start_src_offset_in_bytes =
				op->sym->aead.data.offset;
		job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
		job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
		job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;

		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
			session->iv.offset + 1);
	} else {
		job->cipher_start_src_offset_in_bytes =
				op->sym->cipher.data.offset;
		job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;

		job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset;
		job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;

		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
			session->iv.offset);
	}

	/* Set user data to be crypto operation data struct */
	job->user_data = op;

	return 0;
}

static inline void
verify_digest(struct aesni_mb_qp *qp __rte_unused, JOB_AES_HMAC *job,
		struct rte_crypto_op *op) {
	/* Verify digest if required */
	if (job->hash_alg == AES_CCM) {
		if (memcmp(job->auth_tag_output, op->sym->aead.digest.data,
				job->auth_tag_output_len_in_bytes) != 0)
			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
	} else {
		if (memcmp(job->auth_tag_output, op->sym->auth.digest.data,
				job->auth_tag_output_len_in_bytes) != 0)
			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
	}
}

/**
 * Process a completed job and return rte_mbuf which job processed
 *
 * @param qp		Queue Pair to process
 * @param job	JOB_AES_HMAC job to process
 *
 * @return
 * - Returns processed crypto operation.
 * - Returns NULL on invalid job
 */
static inline struct rte_crypto_op *
post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job)
{
	struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
	struct aesni_mb_session *sess = get_sym_session_private_data(
							op->sym->session,
							cryptodev_driver_id);

	if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
		switch (job->status) {
		case STS_COMPLETED:
			op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;

			if (job->hash_alg != NULL_HASH) {
				if (sess->auth.operation ==
						RTE_CRYPTO_AUTH_OP_VERIFY)
					verify_digest(qp, job, op);
			}
			break;
		default:
			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
		}
	}

	/* Free session if a session-less crypto op */
	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
		memset(sess, 0, sizeof(struct aesni_mb_session));
		memset(op->sym->session, 0,
				rte_cryptodev_sym_get_header_session_size());
		rte_mempool_put(qp->sess_mp, sess);
		rte_mempool_put(qp->sess_mp, op->sym->session);
		op->sym->session = NULL;
	}

	return op;
}

/**
 * Process a completed JOB_AES_HMAC job and keep processing jobs until
 * get_completed_job return NULL
 *
 * @param qp		Queue Pair to process
 * @param job		JOB_AES_HMAC job
 *
 * @return
 * - Number of processed jobs
 */
static unsigned
handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job,
		struct rte_crypto_op **ops, uint16_t nb_ops)
{
	struct rte_crypto_op *op = NULL;
	unsigned processed_jobs = 0;

	while (job != NULL) {
		op = post_process_mb_job(qp, job);

		if (op) {
			ops[processed_jobs++] = op;
			qp->stats.dequeued_count++;
		} else {
			qp->stats.dequeue_err_count++;
			break;
		}
		if (processed_jobs == nb_ops)
			break;

		job = (*qp->op_fns->job.get_completed_job)(&qp->mb_mgr);
	}

	return processed_jobs;
}

static inline uint16_t
flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	int processed_ops = 0;

	/* Flush the remaining jobs */
	JOB_AES_HMAC *job = (*qp->op_fns->job.flush_job)(&qp->mb_mgr);

	if (job)
		processed_ops += handle_completed_jobs(qp, job,
				&ops[processed_ops], nb_ops - processed_ops);

	return processed_ops;
}

static inline JOB_AES_HMAC *
set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op)
{
	job->chain_order = HASH_CIPHER;
	job->cipher_mode = NULL_CIPHER;
	job->hash_alg = NULL_HASH;
	job->cipher_direction = DECRYPT;

	/* Set user data to be crypto operation data struct */
	job->user_data = op;

	return job;
}

static uint16_t
aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	struct aesni_mb_qp *qp = queue_pair;

	struct rte_crypto_op *op;
	JOB_AES_HMAC *job;

	int retval, processed_jobs = 0;

	if (unlikely(nb_ops == 0))
		return 0;

	uint8_t digest_idx = qp->digest_idx;
	do {
		/* Get next operation to process from ingress queue */
		retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
		if (retval < 0)
			break;

		/* Get next free mb job struct from mb manager */
		job = (*qp->op_fns->job.get_next)(&qp->mb_mgr);
		if (unlikely(job == NULL)) {
			/* if no free mb job structs we need to flush mb_mgr */
			processed_jobs += flush_mb_mgr(qp,
					&ops[processed_jobs],
					(nb_ops - processed_jobs) - 1);

			job = (*qp->op_fns->job.get_next)(&qp->mb_mgr);
		}

		retval = set_mb_job_params(job, qp, op, &digest_idx);
		if (unlikely(retval != 0)) {
			qp->stats.dequeue_err_count++;
			set_job_null_op(job, op);
		}

		/* Submit job to multi-buffer for processing */
		job = (*qp->op_fns->job.submit)(&qp->mb_mgr);

		/*
		 * If submit returns a processed job then handle it,
		 * before submitting subsequent jobs
		 */
		if (job)
			processed_jobs += handle_completed_jobs(qp, job,
					&ops[processed_jobs],
					nb_ops - processed_jobs);

	} while (processed_jobs < nb_ops);

	qp->digest_idx = digest_idx;

	if (processed_jobs < 1)
		processed_jobs += flush_mb_mgr(qp,
				&ops[processed_jobs],
				nb_ops - processed_jobs);

	return processed_jobs;
}

static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev);

static int
cryptodev_aesni_mb_create(const char *name,
			struct rte_vdev_device *vdev,
			struct rte_cryptodev_pmd_init_params *init_params)
{
	struct rte_cryptodev *dev;
	struct aesni_mb_private *internals;
	enum aesni_mb_vector_mode vector_mode;

	/* Check CPU for support for AES instruction set */
	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
		AESNI_MB_LOG(ERR, "AES instructions not supported by CPU");
		return -EFAULT;
	}

	dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
	if (dev == NULL) {
		AESNI_MB_LOG(ERR, "failed to create cryptodev vdev");
		return -ENODEV;
	}

	/* Check CPU for supported vector instruction set */
	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
		vector_mode = RTE_AESNI_MB_AVX512;
	else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
		vector_mode = RTE_AESNI_MB_AVX2;
	else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
		vector_mode = RTE_AESNI_MB_AVX;
	else
		vector_mode = RTE_AESNI_MB_SSE;

	dev->driver_id = cryptodev_driver_id;
	dev->dev_ops = rte_aesni_mb_pmd_ops;

	/* register rx/tx burst functions for data path */
	dev->dequeue_burst = aesni_mb_pmd_dequeue_burst;
	dev->enqueue_burst = aesni_mb_pmd_enqueue_burst;

	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
			RTE_CRYPTODEV_FF_CPU_AESNI;

	switch (vector_mode) {
	case RTE_AESNI_MB_SSE:
		dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
		break;
	case RTE_AESNI_MB_AVX:
		dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
		break;
	case RTE_AESNI_MB_AVX2:
		dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2;
		break;
	case RTE_AESNI_MB_AVX512:
		dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512;
		break;
	default:
		break;
	}

	/* Set vector instructions mode supported */
	internals = dev->data->dev_private;

	internals->vector_mode = vector_mode;
	internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;

	return 0;
}

static int
cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev)
{
	struct rte_cryptodev_pmd_init_params init_params = {
		"",
		sizeof(struct aesni_mb_private),
		rte_socket_id(),
		RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
	};
	const char *name, *args;
	int retval;

	name = rte_vdev_device_name(vdev);
	if (name == NULL)
		return -EINVAL;

	args = rte_vdev_device_args(vdev);

	retval = rte_cryptodev_pmd_parse_input_args(&init_params, args);
	if (retval) {
		AESNI_MB_LOG(ERR, "Failed to parse initialisation arguments[%s]",
				args);
		return -EINVAL;
	}

	return cryptodev_aesni_mb_create(name, vdev, &init_params);
}

static int
cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev)
{
	struct rte_cryptodev *cryptodev;
	const char *name;

	name = rte_vdev_device_name(vdev);
	if (name == NULL)
		return -EINVAL;

	cryptodev = rte_cryptodev_pmd_get_named_dev(name);
	if (cryptodev == NULL)
		return -ENODEV;

	return rte_cryptodev_pmd_destroy(cryptodev);
}

static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
	.probe = cryptodev_aesni_mb_probe,
	.remove = cryptodev_aesni_mb_remove
};

static struct cryptodev_driver aesni_mb_crypto_drv;

RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
	"max_nb_queue_pairs=<int> "
	"socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv,
		cryptodev_aesni_mb_pmd_drv.driver,
		cryptodev_driver_id);

RTE_INIT(aesni_mb_init_log)
{
	aesni_mb_logtype_driver = rte_log_register("pmd.crypto.aesni_mb");
}